欢迎来到华夏图书馆!包月下载,不限IP,随心所欲! 【加入收藏】
| 本站已稳定运行4034天

积分因子法毕业论文与本科毕业论文因子分析

点击进入免费下载2022年中国知网论文


1、天文学、冯如

近现代西方著名天文学家姓名(中文) 生卒年月 国籍 职业与事迹 阿尔文 1908~ 瑞典 天文学家。 阿姆巴楚米扬 1908~1996 苏联 天文学家。 爱丁顿 1882~1944 英国 天文学家,恒星大气结构理论创立者之一,首次用观测日全食的方法证实广义相对论。 爱因斯坦 1879~1955 美籍以色列 天文学家。狭义相对论和广义相对论的创立者,因光电效应的研究成果于1921年获诺贝尔物理学奖。 奥本海默 1904~1967 美国 天文学家。atom bomb之父 奥尔特 1900~1992 荷兰 天文学家,为银河系的结构和运动学理论做出重要贡献。 巴德 1893~1960 德国 天文学家。 贝塞尔 1784~1846 德国 天文学家,首次测量得到恒星视差。 伯比奇·G 1925~ 英国 现代天文学家。 布拉得雷 1693~1762 英国 天文学家,首次发现“光行差”现象。 布朗 1866~1938 美国 天文学家。 布鲁诺 1548~1600 意大利 天文学家,因宣传日心说和“无限宇宙”而被教会烧死。 昌德拉塞卡 1910~ 印度 天文学家。 德西特 1822~1934 荷兰 天文学家,宇宙学家 第谷 1540~1601 丹麦 天文学家,同时代最著名的观测巨匠,其观测数据为开普勒创立行星运动定律奠定了基础。 伽利略 1564~1642 英国 天文学家,天文望远镜的发明者,用望远镜观测天体,人类历史上第一次观测到了月面结构、金星圆缺变化、木星及其卫星以及银河系有恒星组成等,为证实日心说奠定了观测基础。 高斯 1777~1855 德国 天文学家,数学家,首次提出三次观测计算确定行星运动轨道的理论。 哥白尼 1473~1543 波兰 天文学家。日心说的创立者。 哈勃 1889~1953 美国 天文学家,1929年发现宇宙膨胀的哈勃定律(星系相互距离越远,相互远离速度越快),为现代宇宙学奠定了观测基础。 哈雷 1656~1742 英国 天文学家,首次算出彗星的运行轨道,该彗星即以其名为“哈雷彗星”。 海耳 1868~1938 美国 天文学家。 赫茨普龙 1873~1967 丹麦 天文学家,与美国天文学家罗素各自独立地通过恒星光谱研究发现了恒星的光度与表面温度的关系,即著名的“赫罗图”。 惠更斯 1629~1695 荷兰 天文学家,光学理论的奠基人之一。 霍金斯 1928~ 英国 天文学家。 霍伊尔 1915~ 英国 天文学家。 卡普坦 1851~1922 荷兰 天文学家,为银河系的结构研究做出重要贡献。 卡西尼G.D. 1625~1712 法国 天文学家。 开普勒 1571~1630 德国 天文学家,行星运动定律的创立者。 康德 1724~1804 德国 天文学家,数学家,哲学家。 柯伊伯 1905~1973 美国 天文学家。 克里斯琴森 1913~ 澳大利亚 天文学家 拉格朗日 1736~1813 法国 著名天文学家,数学家。 拉普拉斯 1749~1827 法国 著名天文学家,数学家和物理学家。提出太阳系形成的星云假说。 勒梅特 1894~1966 比利时 天文学家,数学家;最早提出宇宙膨胀假说,是宇宙大爆炸理论的创立者之一。 勒威耶 1811~1877 法国 天文学家。和英国天文学家亚当斯各自独立地根据天王星运动的异常计算出当时未知的新行星(海王星)的轨道,预言海王星的出现位置并为德国人伽勒的观测所证实。 林德布拉德 1895~1965 瑞典 天文学家。 罗素 1877~1957 美国 天文学家,与丹麦天文学家赫兹普龙各自独立地通过恒星光谱研究发现了恒星的光度与表面温度的关系,即著名的“赫罗图”。 洛威尔 1855~1916 美国 天文学家。 洛希 1820~1883 法国 天文学家。 马克斯托夫 1896~? 苏联 天文学家。 牛顿 1642~1727 英国 天文学家、数学家、物理学家,万有引力定律创立者,反射式天文望远镜发明者。 纽康 1835~1909 美国 天文学家,数学家。 彭齐亚斯 1933~ 美国 天文学家。因探测到“宇宙微波背景辐射”而获得诺贝尔奖。 琼斯 1890~1960 英国 天文学家。 沙普利 1885~1972 美国 天文学家,为银河系结构理论做出重要贡献。 施密特,B.V. 1879~1935 德国 天文学家。 施密特,M 1929~ 荷兰 天文学家。 史瓦西 1873~1916 德国 天文学家。 斯特鲁维,B.R. 1793~1864 俄国 天文学家。 汤斯 1915~ 美国 天文学家。 央斯基 1905~1950 美国 天文学家。神农氏:最老的了,为《神农百草经》做出了很大的贡献啊!~扁鹊: 战国时医学家。姓秦,名越人,渤海郡囗(今河北任丘)人。学医于长桑君。医疗经验丰富,遍游各地行医,擅长各科。在赵为“带下医”(妇科),至周为“耳目痹医”(五官科),入秦为“小儿医”(儿科),医名甚著。《汉书·艺文志》载有《扁鹊内经》、《外经》。华佗(?-208) :东汉末医学家。又名歫。字元化。沛国谯(今安徽亳县)人。 精内、外、妇、儿、针灸各科,于外科尢为擅长,施针用药,简单有效。曾以“麻沸散”为“肠胃积聚”等病患者做麻醉,成功施行腹部手术。反映早在公元二世纪时,古人对于麻醉方法和外科手术的运用已相当成熟。现存《中藏经》,系后人托名之作。张仲景 :汉末著名医学家。名机。南阳郡(今河南南阳)人。学医于同郡张伯祖 。相传曾任长沙太守。当时伤寒流行,病死者很多。经钻研《内经》、《难经》及《胎胪药录》等古代医书,并广泛收集有效方剂,著《伤寒卒(杂)病论》。总结了汉以前民间医疗经验,对中国医学的发展有重大贡献。王叔和 :魏晋间医学家。名熙,高平人。曾任太医令。精研医学,重视诊脉,收 辑前代诊脉文献,结合自己的体会,编成《脉经》十卷,是现存最早的脉学专书。皇甫谧(215--282): 魏晋间医学家。幼名静,字士安,自号玄晏先生,安定朝 那(今甘肃平凉西郊)人。根据《素问》、《针经》、《明堂孔穴针灸治要》等书,著成《甲乙经》。巢元方 :隋代医学家。曾任太医博士,隋大业六年(610)主持 编撰《诸病源候论》。其书列述各类病症,为研究古代医学的重要资料。孙思邈(581--682): 唐医学家。京兆华原(今陕西耀县)人。少时因病学医,对医学有较深研究,并博涉经史百家学术,兼通佛典。曾总结唐以前临床经验和医学理论,收集方药、针灸等内容,著有《千金要方》、《千金翼方》、其书首列妇女、幼儿疾病,并倡立脏病、腑病分类,具有新的系统性,在医学上有较大贡献。王冰:唐代医学家。自号启玄子。平素钻 研医学,曾郃时十二年,注释九卷本《黄帝内经素问》。所著又有《玄珠密语》、《元和纪用经》等,一说为后人王惟一: 北宋医学家。天圣四年(1026)参与官修 《铜人腧穴针灸图经》,在总结古人针灸医疗实践基础上,考定明堂图经络孔穴。并铸成立体铜人孔穴模型。后又参预校正《黄帝八十一难经》。《铜人腧穴针灸图经》等流传至日本、朝鲜等国,对东亚地区针灸医学有重要影响。唐慎微: 北宋医药学家。字审元,蜀州晋原(今四川崇庆)人,曾著《补注神农本草》、《图经本草》两书,并搜辑经史诸子文献内所载方药。重视民间医药经验,曾赴各地采访单方、草药,编为《经史证类备急本草》,总结了宋以前药物学成就。许叔微: 南宋医学家。字知可,绍兴二年(1132年)进 士,所著《伤寒发微论》、《伤寒百证歌》、《伤寒九十论》等,对汉张仲景《伤寒论》的内容有所发挥。另著有《普济本事方》,记录医案及经验诸方。王好古: 元代医学家。字进之,号海藏,赵州(今河北赵县)人。曾学医于张洁 古、李东垣,并任赵州医学教授。所著有《医垒元戎》、《汤液本草》、《此事难知》、《阴症略例》等,对脾胃学说多所阐发。朱丹溪(1281--1358): 元代医学家。名震亨,字彦修,家居丹溪,早年即好医学,所著《格致馀论》,认为多种疾病的病机,均由“阳有馀、阴不足”所致,其治法主张“滋阴降火”。对于当时《和剂局方》中用药偏于温燥现象,著《局方发挥》加以批评。另著《素问纠略》、《本草衍义补遗》等。 薛己(1488--1558): 明代医学家。字新甫,号立斋。江苏吴县人。家世业医, 曾任太医院院使。其医论重视脾肾,治法善用补益。自著及注释医书十六种,多附治验病例。�人汇集其著作为《薛氏医案》七十八卷,其《口齿类要》等,为现存较早的口腔、喉科专著。李时珍(1518--1593): 明代杰出医药学家。字东璧,号濒湖,蕲州(今湖北蕲 春)人。家世业医,注重药物研究,重视临床实践。曾长期上山采药,并深入民间,向农民、渔民、樵民、药农、铃医请教,参考历代医药及有关书籍八百馀种,对各种药物亲自鉴别考证,纠正了古代《本草》书中药名、品种、产地等错误,并收集整理宋、元以来民间发现的多种药物,经二十七年艰苦劳动,著成《本草纲目》。其书收录诸家《本草》所载药物共一千五百十八种,新增药物三百七十四种,总结了十六世纪以前我国古代人民的药物经验,对后世药物学发展作出了重大贡献。所著又有《濒湖脉学》、《奇经八脉考》流传于世。另有《五脏图论》、《三焦客难》、《命门考》等。张景岳(1562--1639):明代医学家。名介宾,字会(惠)卿,会稽(今浙江绍 兴)人。曾学医于金英(梦石)。精研《内经》,历时三十年为之整理注释,著有《类经》、《类经图翼》、《类经附翼》等、《景岳全书》、《质疑录》等,于医学理论颇多阐发。 张石顽(1617--1701?): 清初医学家。名璐,字路玉,长洲( 今江苏吴县)人。所著有《伤寒缵论》、《伤寒绪论》、《本经逢原》、《诊宗三昧》等。又著《医通》, 薛雪(1681--1770): 清代医学家。字生白,号一瓢,江苏苏州人。少习文史, 兼擅诗画,医术与同郡叶天士齐名。曾选辑《内经》原文,按阴阳、藏象、论治、疾病等分为十四类,约取诸家注释,并加入个人体会,编为《医经原旨》。又著《湿热篇》,为论湿热病之专著。王清任(1768--1831): 清代医学家。字勋臣,河北玉田人。以为“业医诊病, 当先明脏腑”。为明解剖,曾冲破封建礼教的束缚与非难,亲至坟冢间观察小儿残尸,并至刑场检视尸体脏器结构。所著《医林改错》,纠正古代医书记载脏器结构及功能之错误(也有误改之处)。其医论和诊治重视气血、擅长活血化瘀。本回答由提问者推荐R23CRE32WRC23RC23RC32ER23R23R23R2R23R23张衡(公元78-139年),字平子,南阳西鄂人(今河南省南阳市石桥镇夏村),曾任尚书和河间相等职。他"天资睿哲,敏而好学,如川之逝,不舍昼夜。道德漫流,文章云浮,数术穷天地,制作侔造化,奇技伟艺,磊落焕炳。"他"不患位之不尊,而患德之不崇;不耻禄之不伙,而耻智之不博。"是我国东汉时期伟大的科学家、文学家、发明家和政治家,在世界科学文化史上树起了一座巍巍丰碑。石申,一名石申夫,魏国人,战国中期天文学家、占星家。生卒年不详,大约生活在公元前4世纪。《史记·天官书》记载,战国时期著名的天文学家有四家:“在齐,甘公;楚,唐昧;赵,尹皋;魏,石申。”还说各家的天文学都有占星术的内容,在他们的著作中能够看到当时战乱相寻的形势,记录着为政治事件占验的各种各样的说法,即“田氏纂齐,三家分晋,并为战国。争于攻取,兵革更起,城邑数屠,因以饥谨疾疫焦苦,臣主共忧患,其察视祥候星气尤急,近世十二诸侯七国相王,言从(纵)衡者继踵,而皋、唐、甘、石因时务论其书传,故其占验凌杂米盐。”《史记正义》引南朝时代梁阮孝绪的《七录》说,“石申,魏人,战国时作《天文》八卷也。”可惜书已失传。石申在天文学方面的贡献,是他与甘德所测定并精密记录下的黄道附近恒星位置及其与北极的距离,是世界上最古的恒星表。相传他所测定的恒星,有138座,共880颗。从唐代《开元占经》中保存下来的石申著作的部分内容看,其中最重要的是标有“石氏曰”的121颗恒星的坐标位置(今本《开元占经》中佚失6个星官的记载)。现代天文学家根据对不同时代天象的计算来验证,表明其中一部分坐标值(如石氏中、外星官的去极度和黄道内、外度等)可能是汉代所测;另一部分(如二十八宿距度等)则确与公元前4世纪,即石中的时代相合。郭守敬(1231-1316),中国元代的大天文学家、数学家、水利专家和仪器制造家。字若思,顺德邢台(今河北邢台)人。生于元太宗三年,卒于元仁宗延二年。 郭守敬幼承祖父郭荣家学,攻研天文、算学、水利。元十三年(公元1276年)元世祖忽必烈攻下南宋首都临安,在统一前夕,命令制订新历法,由张文谦等主持成立新的治历机构太史局。太史局由王恂负责,郭守敬辅助。在学术上则王恂主推算,郭主制仪和观测。 至元十五年(或十六年),太史局改称太史院,王恂任太史令,郭守敬为同知太史院事,建立天文台。当时,有杨恭懿等来参予共事。经过四年努力,终于在至元十七年编出新历,经忽必烈定名为《授时历》。祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。 此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。 从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。 1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。 晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁。 欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一•伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专 攻数学,并开始发表文章。 1727年,在丹尼尔•伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一•伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典着作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值 ,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209 …… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了 n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示 z对 x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的哥尼斯堡七桥问题,创立了拓扑学。 欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。

2、综合素质测评分几部分

同学们大家好,我桂林理工大学外国语学院的学生,很高兴能帮助你 下列文件来自 关于印发的通知,桂林大学生综合素质测评办法 注:表格的一些混乱,建议直接打开网站查看 2011年8月最新修订桂林理工大学学生手册 桂林理工大学的学生综合素质评价方法(P186)如下: 桂林理工大学学生综合素质评价办法 ? 第一章总则 ?第一,以认真贯彻党的教育方针,全面推进素质教育,引导的学生,以研究很难在学校期间,和进步的,决定到成长,和努力,以创造“的理想,道德,文化和纪律“事业的社会主义合格建设者和可靠接班人,根据学校的实际情况,特制定本办法。 ???综合素质评价的科学专业的学生在学校的表现,规范,系统的评价,??评价结果作为划分不同类型的奖学金,选择先进个人(“三好??学生”,“优秀学生干部”,“优秀毕业生”等。),以及建议用人单位在毕业生就业的主要依据。 ???综合素质评价应坚持以下原则: ??(A)的科学原理。综合评价必须是公平,合理,实事求是,真正体现了党的教育方针和学校的规章制度,发挥激励先进,鞭策落后,全面推进素质教育的作用。 ??(B)客观性原则。综合评价是真实的,准确的,充分反映学生平时表现目标。每类注意建立学生通常表现文件,及时收集数据和信息。 ??(C)开放的原则。坚持自我评价,综合评价相结合的质量评价和组织考核,评估,评价过程和评价结果的原则,应当予以公布。 ??(D)公正原则。应严格按照统一的标准评估规则准确地评估规范运作,摆脱人的因素,以确保评价过程和结果的公正性进行综合评价。 四是整体质量的评价指标体系??? 综合素质评价包括四个方面的德育,智育,体育,能力,所有满分为100分,分别为20%,50%,10%,20%权重新换算闭幕。 ???第五个全面的质量评估分数 ??(A),全面质量评估分=德育评估的成绩×20%+智力成绩×50%+体育成绩×10%+能力得分×20%。 ??(B)学年综合素质评价分(最后一学期的评估点+下学期的评估点)÷2。 ??(C)毕业生综合素质评价每学年,每÷学年的综合素质评价,平均=。 ???计算在总成绩的综合评价学校的实习学生(除悬浮液),延长或缩短学年的学习,在本学期的实际学习的整体质量得分。 ? 第二章学生综合素质评价标准和方法计算的 ???文章道德教育质量评价 ???道德品质的总成绩为100个基本点应该是加分,应减少到三个部分组成。 ??(A)道德基础分(70分) 基本要求如下: ???1,坚持四项基本原则,并站稳在脸上,可以用马克思主义的立场,观点和方法来分析和处理问题; ???2,遵纪守法,遵守社会道德风尚,爱祖国,爱人民,爱科学,劳动和社会主义; ???自觉遵守的“高等学校学生行为准则”,遵守校纪校规,有一种强烈的爱学校和主人翁意识; ???的学生尊敬师长,热爱集体,团结帮助他人,积极参加集体活动和公益活动; ???政治理论学习,态度,和积极参与的形势与政策教育,新生教育,日常思想政治教育活动。 ??(B)道德分 ???1,思想上要求进步,积极靠拢党。当共产主义的党员,入党积极分子,积极发挥模范带头作用,并通过考试加5分和3分,考试不及格分(由学院党委提供的列表类加分资格); ??好行为的奖励:凡有举报违规行为的勇气,敢于对抗的行为,见义勇??为,救死扶伤,拾金不昧的优秀事迹(由县级以上政府部门的确认通知,感谢您的信件或报纸媒体的报道,学校学工处确定),由校级承认由国家认可的加30分,20分,省级表彰的加1??0分; ???3,宿舍性能 (1)在宿舍文明评比活动,表彰奖励加分,按照以下标准: 水平及其他倍 一 二 三 鼓励 描述 上校级别 5 4 3 2 这点至不超过10个点 学院 3 2 1 0.5 (2)学生宿舍学期总成绩的健康得分根据以下准则: 分数 ≥95分 85-94点 75-84点 60-74点 <60 相应的分数 10 7 4 2 0 ???学生领袖履行工作职责,在一所学校,学院,班级,小组工作,完成任务,加分可按照以下标准计算: ?类别 成绩 水平 学生干部在各级积分 类别 最高点 学校层面 学生会主席;组社工局副局长协会主席,学生工作助理中心主任;学生宿舍管理委员会主任;国旗班班长 10 学生会副会长;共产主义青年团的成员;协会副会长;中心的学生工作助理,大学生宿舍自我管理委员会副主任;协会(商会)会长;国旗班副班长 8 学生会秘书长,办公室主任和部长,学生工作助理,部长委员会的大学生的自我管理的宿舍,各种协会(商会)副会长;工作研究主任助理,经理助理,大学生艺术团负责人 6 学生会副秘书长,副主任,副部长,学生工作助理中心,学生宿舍自我管理委员会各部委,副部长;协会(商会)的部长,副总裁;宿舍楼栋长工作研究部门负责人社团(协会主席) 5 各种学生组织干事;宿舍楼;社团(协会)副部长(总干事) 4 学院 共青团副书记的学生会主席; 10 学生会副主席,学生党支部书记 8 学生工会,共产主义青年团秘书干事,主任办公室和部长,学生党支部副书记 6 学生会,团委副秘书长,副主任,副部长,学生党支部成员 5 学生会,团委 4 宿舍舍长 2 类 团支部书记,班长 5 其他类别的领导 3 说明:加学生领袖原则上,应担任一个学期,再加上工作的学生领袖在适当的调整,最高加分评分的基础上。考试没有工作,或纪律处分的现象,或,重建两个以上的课程,或在一个宿舍为不合格宿舍(包括宿舍学期的GPA低于60分)的学生领袖奖励点数。 认真良好的思想政治理论课(介绍马克思主义基本原理,毛泽东思想,邓小平理论和有中国特色社会主义理论体系,中国历史,思想道德修养与法律基础)考试为一个疗程。超过85点,或检查优异成绩加5分。 6,参加学校的“学生手册”测试成绩在85分以上的加5分。 7,评价标准也有类似的项目加分,得分最高的是只计算一次,不重复累计。 (C)道德扣分 1,反动的言论和行为,反对四项基本原则,......... ...............和谐,破坏安定团结,扰乱校园和社会秩序,道德品质的项目不得分; 违反校纪校规的大学水平,院级通信的批评被扣除10分,5分,受警告,严重警告,记过,缓刑制裁那些谁被扣除15分,20分,25分和30分钟。 3,恶意拖欠学费和其他不良信用记录的,扣15分; 4,学校,学院,班级需要统一参加集体活动(包括类,广播操,早夜班,班会,团组织生活,报告等),每旷工,扣2分,迟到或早退累计时间计数的情况下; 5,中共党员,学生干部及学生组织在各级学校,学院和班级,工作严重失职,突发事件或恶性违法违纪案件不报告,不及时,不制止或抢救扣15分负责领导在事故发生后,该组织负责扣20分。 6,60点或研究成果的思想政治理论课考试失败,以及在校学生手册“的考试成绩,在不到60分钟不到5。 7时,本学期宿舍卫生学期总成绩低于60分的评价,舍舍长扣5分,评为不合格的宿舍或宿舍,宿舍成员,扣4分。 8,1-7可累计扣分,直到扣完,直到思想道德素质得分。 ??(D)道德教育质量评估点计算 道德教育的质量得分=基本分+点 - 应该被扣分 学生的道德鸿沟超过100点至100点的质量评价。 ???第七条的智力素质的评价 知识产权质量分数=Σ(课程百分制成绩学分的过程中,××K)/ SIGMA课程学分 说明: 当学期应完成的所有课程,本科学生,转学生,研究生提前1个疗程,当然不包括在评估第二学位学生补修的专业培训课程。重新学习的课程,物理教育,公共选修课不包括在这个分数。 2,扣分,其转换过程的标准:优良的-95点良性-85点,-75点,通过-65 -40点失败。 3,K课程系数,其值为:1.4公共基础课(数学类,物理类,计算机类,大学课程),专业(技术)基础课为1.2,其他课程(含军事教育集中实践教学环节,职业生涯指导等)。 4,重新安排和化妆后的测试结果的过程。的其他情形,使通过的课程成绩为60米,化妆不化妆前成绩通过的课程成绩,在考试中作弊或为没有理由Kuangkao的过程为0分。 第八条运动素质评价 体育总成绩为100个基本点的质量应该是加分,应减少到三部分组成。 ??(A)体育基础点 创建体育教育专业学生,基点=(学生的健康60%×40%+专业考试)的考试成绩×60%+课外体育锻炼分钟×40% 体育专业学生并没有被打开,基础点=学生的健康测试成绩×60%+课外体育锻炼点×40% 说明: 1,考试成绩由体育系学生的健康和专业考试。 2,课外体育锻炼学校统一安排体育活动,包括广播操,长跑,由学校提供,院学生工作部门负责考勤记录。课外运动点=实际出席次数×100 /考勤号码。 ??(B)体育加分 学生参加各种体育比赛,根据以下标准分计算 ??排名 水平 破纪录 一 二 三 四 五 六 七,八 参与 国 30 15 13 11 9 7 5 4 3 省级 20 10 8 7 6 5 4 3 2 城市大学 12 6 5 4 3 2 1.5 1 0.5 学院 8 4 3 2 1.5 1 0.5 - 0.2 说明:根据上述标准减半加分的非关键球员的集体项目,每类组织的体育比赛,前六名大学水平的运动员完成前六的分数减半征收额外??加分。辍学率是不加分后参加各种体育比赛。 ??(B)体育扣分 1,当学年,学生的健康考试成绩或物理教育职系失败,失败扣除10分; 2,课外体育锻炼的实际出勤率低于90%的,扣10分。 ??(3)运动的质量得分计算 体育素质成绩= +基地+应该是加分 - 扣分 学生体育素质的评价得分超过100点,100点。 ???第九条的能力和质量评价。 的总成绩为100分,能力和质量的基本点应该是加分,应减少到三部分组成。 ??(A)的基础上的能力(30分) 基本要求如下: 1,积极参加学生的课外实验,小制作,小论文,小发明,在学术和科研活动; 2,积极拓展个人能力,参与专业学习的学科竞赛的质量技术实践活动; 3,积极参加开放实验要求参与的学校和专业实习; 4,积极参加各种社会实践。 ??(B)的能力 1,凡正式颁发的证书权威部门的专业技能,职业技能,素质拓展等(类评估小组负责审计学院原,验证),符合以下条件的点: (1)英语四级考试加分数 ??类别 级 非英语(本科) 艺术类本科专业和普通专科 英语专业 四 六 四 六 广西三 特别是4 特别是8 小学一年级 5 - 6 - 5 5 - 二年级 4 6 5 7 4 4 6 小学三年级 3 5 4 6 3 3 5 小学四年级 2 4 3 5 2 2 4 说明: ①一次英语测试点,每学年后记录一次的分数,直到毕业。 ②通过大学CET点的英语专业。 (2)计算机等级考试加得分 ?级 级 一 二 三 四 合格 优秀 合格 优秀 合格 优秀 合格 优秀 小学一年级 3 4 5 6 7 8 10 11 二年级 2 3 4 5 6 7 10 11 小学三年级 - 2 3 4 5 6 10 11 小学四年级 - - 2 3 4 5 10 11 说明: ①计算机等级考试一次记录一次每学年加分后的分数,直到毕业。 ②计算机科学计算机专业的学生水平没有点。 (3)学期加5时,获得了广泛的行业证书在证书。 2,学科竞赛 (1)学生参加各类学科竞赛,点按以下标准计算: ???倍 水平 头等舱 第二 第三类 胜利 直接竞争 选择参与 国 40 30 20 10 4 7 省部级 20 16 12 8 3 5 城市大学 10 8 6 4 2 1 学院 5 4 3 2 1 - 说明:参加各类学科竞赛奖的学生,在合作项目的情况下,所承担的任务奖励评分:等级加分数乘以系数达80%,60%,40%,20%,四舍五入计分。 3,科学及技术活动 (1)学生参加各类科技活动,学科竞赛的标准计算奖励加分的参考。 (2)研究论文发表在各个国家核心期刊,第一个在其他正式学术刊物上,以第一作者加20分,30分;公布;发表在学术诉讼,第一作者加10分。第二作者和转弯得分:第一的分数被乘以的因子为80%,60%,40%,20%,将结果四舍五入得分。 4,校园文化活动 (1)学生参与不同的文化活动,参考学科竞赛的标准计算积分。 (2)非学校剧团的成员,参加每次在大学水平的艺术表演加2分,最多不超过8点。 (3)学校演艺完成的任务。根据他们的表现加6点至10点。 5社会实践 (1)参加在学院组织的社会实践活动,加2点到4点,根据个人表现。 (2)参加假期社会实践,并提交论文或研究加2分,社会实践论文或研究竞赛一,二,三,加10,8,6,4四等奖。 (3)所有的文章,文章发表在校报,学校通讯,杂志和其他出版物,再加上每题2分。 (新闻,通讯及其他作品的每一个不少于500字的数量,两个一米不到500字的)。 表彰奖励加分 ??内容 水平 项目识别 奖励积分 国 三好学生,优秀团员,优秀学生干部,优秀团干部,优秀毕业生,国家奖学金,优秀共产党员 16 他人 10 省部级 三好学生,优秀团员,优秀学生干部,优秀团干部,优秀毕业生,优秀共产党员 12 他人 6 市校级 三好学生标兵 10 三好学生,优秀团员,优秀学生干部,优秀团干部,优秀党??员 8 其他 4 学院 所有类型 2 说明:学生性质的奖励和奖励的具体专业设置包括加每列(如国家励志奖学金,政府奖学金,艰苦专业奖学金,校友奖学金等)。 其他7个学院认可的情况下,可酌情加l?3。 上面加项目所需的证明以上的学院由有关单位颁发的证书,以及相关的出版物或复印件;同一个项目中获奖或发表在不同层次的相同物品,只有得分最高的。 ??(C)的能力,减分 1,各种社会实践活动,不参加学校安排了2点至5点。 其他情况下,批准研究所,5月,在其自由裁量权,按l?3。 ??(D)的计算能力和质量得分: 能力和质量评价得分=基本分+加分 - 扣分 在超过100米的100点质量评估学生的能力。 ? 第二章组织实施综合素质评价 ???条评估机构 ??(A)综合素质评价的学生每学期的类,每个工作领导小组下学期统一组织安排,以完成第二个或第三个星期的在校大学生。评估后,每学年两个学期的学生在学年计算得分。 ??(B)为每个类的的类评估小组成立由辅导员,老师,班干部和学生代表,班干和学生代表参与评估小组必须在批准的类将讨论(人在超过7人,其中学生代表不少于2),专门负责班学生的评价工作的整体质量。 ??(C)为了确保评价真实,客观,全面反映学生的实际情况,学院应当建立健全学生注册系统的性能通常负责收集的原始材料记录学生辅导员的通常表现,老师和学生领袖。 ???第十一条的评价步骤 ??(A)动员。辅导员,教师在课堂上评价学生的整体素质,全面负责,动员前的时间对所有学生的评价,明确提出,意义,评价方法,并有效地使每一个学生的态度,正确评价自己和评价同班同学。科学的评价结果??视图。 ??(B)摘要。每学期开学,学生必须参加的活动的材料或获奖的证明分项目主动向辅导员或教师的综合评价。 ??(C)的得分。每类评估小组,认真履行职责,辅导员,教师组织按照本办法的得分每一个学生在课堂上,并填写在“综合素质评价桂林理工大学学生登记表。 ??(D)进行审查。学院学生工作领导小组负责审核每类综合素质评价结果在第一轮,并根据实际情况和调整的评估结果有权利的规定。 ??(E)的宣传。每名学生的类公布的调查结果,听取他们的意见。 ??(F)记录。审计结束后的第二轮投票结果的大学生学生的综合素质评价工作领导小组,加盖公章,报学生工作的记录,评价的原料是由该机构妥善保存。 ? 第四章附则 ???第十二条,以维持评估结果的权威性和严肃性,人不得评价结果。质疑学生对自己或别人的评价结果??,辅导员,教师应做好准备,验证工作。评价结果有相当大的差异,高校学生工作领导小组同意,由班主任,辅导员主持评估小组将进行复议。学院学生工作领导小组,负责处理投诉的问题,学生评价结果,并在必要时,学生们可以派人参与调查和核查工作。 ???第十三条外国语言CET3 CET4和CET6考试成绩由教务处提供的课程成绩由学院教学秘书参加课外体育锻炼各学院学生工作办公室提供课堂活动所提供的组织单位。各单位提供的材料必须是准确和真实,复制,归档,派学生到所在学院的提供者的报告。 ???第十四条学生会,组社会工作协会干部和共青团负责评估学生工作助理中心,学生宿舍自我管理委员会,共青团干部考核由学校委员会,国旗班,勤工俭学的学生工作在广播电台记者组的评估党委宣传部干部负责,学院学生会,团委,学生党支部干部考核工作由学院党委(直属党分公司)负责类的领导下,团支部干部考核评价由班主任和辅导员负责。在两个星期内,每学期单位将负责评估学生的考试成绩和奖励,加上反馈到每个类的综合素质评估小组。 ???第15条在评估过程中,学生参与评价工作,所有挂羊头卖狗肉,犯有欺诈,无论时发现,一经查实,取消参加年度大奖评估资格,或取消被授予荣誉称号收回奖金,同时给予相应的纪律处分。 ???第十六条本办法自发行之日起,在校全日制大学生,同时取消原来的“桂林工学院技术学院学生德,智,体,群,综合评价方法“(桂工程学院[2007] 60号)。 ???第十七条本办法负责对学生的解释工作。政治素质,日常行为,社会工作,专业成绩,科研实践,人文素质,体育素质

3、杨振宁的主要成就

1、相变理论

统计力学是杨振宁的主要研究方向之一。他在统计力学方面的特色是对扎根于物理现实的普遍模型的严格求解与分析,从而抓住问题的本质和精髓。1952年杨振宁和合作者发表了3篇有关相变的重要论文。这几篇论文的高潮是第二篇论文中的单位圆定理,它指出吸引相互作用的格气模型的巨配分函数的零点位于某个复平面上的单位圆上。

2、玻色子多体问题

起源于对液氦超流的兴趣,杨振宁在1957年左右与合作者发表或完成了一系列关于稀薄玻色子多体系统的论文。

首先,他和黄克孙、Luttinger合作发表两篇论文,将赝势法用到该领域。在写好关于弱相互作用中宇称是否守恒的论文之后等待实验结果的那段时间,杨振宁和李政道用双碰撞方法首先得到了正确的基态能量修正,然后又和黄克孙、李政道用赝势法得到同样的结果。

他们得到的能量修正中最令人惊讶的是著名的平方根修正项,但当时无法得到实验验证。不过,这个修正项随着冷原子物理学的发展而得到了实验证实。

3、1维δ函数排斥势中的玻色子在有限温度的严格解

1969年,杨振宁和杨振平将1维δ函数排斥势中的玻色子问题推进到有限温度。这是历史上首次得到的有相互作用的量子统计模型在有限温度(T>0)的严格解,这个模型和结果后来在冷原子系统中得到实验实现和验证。

4、超导体磁通量子化的理论解释

1961年,通过和Fairbank实验组的密切交流,杨振宁和Byers从理论上解释了该实验组发现的超导体磁通量子化,证明了电子配对即可导致观测到的现象,澄清了不需要引入新的关于电磁场的基本原理,并纠正了London推理的错误。在这个工作中,杨振宁和Byers将规范变换技巧运用于凝聚态系统中。相关的物理和方法后来在超导、超流、量子霍尔效应等问题的研究中广泛应用。

5、非对角长程序

1962年,杨振宁提出“非对角长程序(off-di-agonal long-range order)”的概念,从而统一刻画超流和超导的本质,同时也深入探讨了磁通量子化的根源。这是当代凝聚态物理的一个关键概念。1989到1990年,杨振宁在与高温超导密切相关的Hubbard模型里找到具有非对角长程序的本征态,并和张首晟发现了它的SO(4)对称性。

扩展资料

杨振宁,1922年10月1日出生于安徽合肥,世界著名物理学家,现任香港中文大学讲座教授、清华大学教授、美国纽约州立大学石溪分校荣休教授、中国科学院院士、美国国家科学院院士、台湾“中央研究院”院士、俄罗斯科学院院士、英国皇家学会会员,1957年获诺贝尔物理学奖。

是中美关系松动后回中国探访的第一位华裔科学家,积极推动中美文化交流和中美人民的互相了解;在促进中美两国建交、中美人才交流和科技合作等方面,做出了重大贡献。

1942年,毕业于西南联合大学;1944年,获清华大学硕士学位;1945年,获穆藕初奖学金,赴美留学;1948年,获芝加哥大学哲学博士学位,任芝加哥大学讲师、普林斯顿高等研究院研究员。

1955年,任美国普林斯顿高等学术研究所教授;1966年,任美国纽约州立大学石溪分校教授兼物理研究所所长;1986年,任香港中文大学博文讲座教授;1998年,任清华大学教授;2017年,恢复中华人民共和国国籍;2018年,任西湖大学校董会名誉主席。

杨振宁在粒子物理学、统计力学和凝聚态物理等领域作出了里程碑性的贡献。20世纪50年代和R.L.米尔斯合作提出非阿贝尔规范场理论;1956年和李政道合作提出弱相互作用中宇称不守恒定律。

在粒子物理和统计物理方面做了大量开拓性工作,提出杨-巴克斯特方程,开辟了量子可积系统和多体问题研究的新方向等 。此外,杨振宁推动了香港中文大学数学科学研究所、清华大学高等研究中心、南开大学理论物理研究室和中山大学高等学术研究中心的成立。

参考资料:杨振宁-百度百科

一、成就:提出宇称不守恒、创建了并主持了纽约大学石溪分校的理论物理研究所、提出量子色动力学。

二、杨振宁对中国的贡献:

杨振宁早在文革期间就回国讲学,成为中美关系解冻后的第一位来华访学的知名华裔科学家,为中美人民的相互了解做出了巨大贡献。

浩劫结束后,中国百废待兴,杨振宁多次回国讲学,为被浩劫阻碍的中国物理学界带来了前沿知识。他在八十年代推动南开大学建立理论物理研究室,促成了亿利达青少年发明奖的设立。

到了九十年代末,杨振宁促成了清华大学高等研究中心的建立,吸引大量优秀科学家回国服务,其中包括首位亚裔图灵奖获得者姚期智。

这些年,杨振宁为中国科学发展做出了数不清的贡献,把中国在部分领域拉到了世界一流水平,同时还推荐了上千名优秀学生赴国外深造。主要提出了以下著名的理论:

1、相变理论

统计力学是杨振宁的主要研究方向之一。他在统计力学方面的特色是对扎根于物理现实的普遍模型的严格求解与分析,从而漂亮地抓住问题的本质和精髓。1952年杨振宁发表了3篇有关相变的重要论文。

第一篇是他在前一年独立完成的关于2维Ising模型的自发磁化强度的论文,得到了1/8这一临界指数。这是杨振宁做过的最冗长的计算。Ising模型是统计力学里最基本又极重要的模型,直到1960s才被理论物理界广泛认识,看到了杨的尾灯。

1952年,杨振宁发表了两篇关于相变理论的论文,引起爱因斯坦的兴趣。论文通过解析延拓的方法研究了巨配分函数的解析性质,发现它的根的分布决定了状态方程和相变性质,消除了人们对于同一相互作用下可存在不同热力学相的疑惑。

第二篇论文中的单位圆定理指出吸引相互作用的格气模型的巨配分函数的零点位于某个复平面上的单位圆上,这个理论精品至今翻出来放到统计力学和场论中仍然可以优雅到令人高潮。

2、玻色子多体问题

起源于对液氦超流的兴趣,杨振宁在1957年左右发表了一系列关于稀薄玻色子多体系统的论文。首先,他和黄克孙、Luttinger合作发表两篇论文,将赝势法用到该领域。在写好关于弱相互作用中宇称是否守恒的论文之后等待实验结果的那段时间,杨振宁双碰撞方法首先得到了正确的基态能量修正,然后又用赝势法得到同样的结果。

得到的能量修正中最令人惊讶的是著名的平方根修正项,但当时无法得到实验验证。但是时间时间会给你答案,就象现在的分子生物学去证实达尔文,最近的引力波去印证爱因斯坦。随着冷原子物理学的发展杨振宁的判断也得到了实验证实。

3、杨—Baxter方程

1960年代,寻找具有非对角长程序的模型的尝试将杨振宁引导到量子统计模型的严格解。1967,杨振宁发现1维δ函数排斥势中的费米子量子多体问题可以转化为一个矩阵方程,后被称为杨—Baxter方程。1967年,杨振宁还写了一篇文章进一步探讨了此问题的S矩阵。

后来人们发现杨—Baxter方程在数学和物理中都是极重要的方程,与扭结理论、辫子群、Hopf代数乃至弦理论都有密切的关系。杨振宁当年讨论的1维费米子问题近年来在冷原子的实验研究中显得非常重要,而他在文中发明的嵌套Bethe假设方法次年被Lieb和伍法岳用来解出了1维Hubbard模型。Hubbard模型后来成为高温超导的很多理论研究的基础。

杨振宁,是世界著名物理学家,现任香港中文大学讲座教授、清华大学教授、美国纽约州立大学石溪分校荣休教授、中国科学院院士、美国国家科学院院士、台湾“中央研究院”院士、俄罗斯科学院院士、英国皇家学会会员,是中美关系松动后回中国探访的第一位华裔科学家,积极推动中美文化交流和中美人民的互相了解;在促进中美两国建交、中美人才交流和科技合作等方面,做出了重大贡献。

本回答被网友采纳

相变理论 统计力学是杨振宁的主要研究方向之一。他在统计力学方面的特色是对扎根于物理现实的普遍模型的严格求解与分析,从而抓住问题的本质和精髓。1952年杨振宁和合作者发表了3篇有关相变的重要论文。 第一篇是他在前一年独立完成的关于2维Ising模型的自发磁化强度的论文,得到了1/8这一临界指数。这是杨振宁做过的最冗长的计算。Ising模型是统计力学里最基本却极重要的模型,但是它在理论物理中的重要性到20世纪60年代才被广泛认识。1952年,杨振宁还和李政道合作完成并发表了两篇关于相变理论的论文。两篇文章同时投稿和发表,发表后引起爱因斯坦的兴趣。 论文通过解析延拓的方法研究了巨配分函数的解析性质,发现它的根的分布决定了状态方程和相变性质,消除了人们对于同一相互作用下可存在不同热力学相的疑惑。这两篇论文的高潮是第二篇论文中的单位圆定理,它指出吸引相互作用的格气模型的巨配分函数的零点位于某个复平面上的单位圆上。 玻色子多体问题 起源于对液氦超流的兴趣,杨振宁在1957年左右与合作者发表或完成了一系列关于稀薄玻色子多体系统的论文。首先,他和黄克孙、Luttinger合作发表两篇论文,将赝势法用到该领域。在写好关于弱相互作用中宇称是否守恒的论文之后等待实验结果的那段时间,杨振宁和李政道用双碰撞方法首先得到了正确的基态能量修正,然后又和黄克孙、李政道用赝势法得到同样的结果。他们得到的能量修正中最令人惊讶的是著名的平方根修正项,但当时无法得到实验验证。不过,这个修正项随着冷原子物理学的发展而得到了实验证实。 杨—Baxter方程 20世纪60年代,寻找具有非对角长程序的模型的尝试将杨振宁引导到量子统计模型的严格解。1967 年,杨振宁发现 1 维δ函数排斥势中的费米子量子多体问题可以转化为一个矩阵方程,后被称为杨—Baxter方程(因为1972年Baxter在另一个问题中也发现这个方程)。 1967年,杨振宁还写了一篇于翌年发表的文章,进一步探讨了此问题的S 矩阵。 后来人们发现杨—Baxter 方程在数学和物理中都是极重要的方程,与扭结理论、辫子群、Hopf代数乃至弦理论都有密切的关系。杨振宁当年讨论的1维费米子问题后来在冷原子的实验研究中显得非常重要,而他在文中发明的嵌套Bethe假设方法次年被Lieb和伍法岳用来解出了1维Hubbard模型。Hubbard模型后来成为高温超导的很多理论研究的基础。 1维δ函数排斥势中的玻色子在有限温度的严格解 1969年,杨振宁和杨振平将1维δ函数排斥势中的玻色子问题推进到有限温度。这是历史上首次得到的有相互作用的量子统计模型在有限温度(T>0)的严格解,这个模型和结果后来在冷原子系统中得到实验实现和验证。 超导体磁通量子化的理论解释 1961年,通过和Fairbank实验组的密切交流,杨振宁和Byers从理论上解释了该实验组发现的超导体磁通量子化,证明了电子配对即可导致观测到的现象,澄清了不需要引入新的关于电磁场的基本原理,并纠正了London推理的错误。在这个工作中,杨振宁和Byers将规范变换技巧运用于凝聚态系统中。相关的物理和方法后来在超导、超流、量子霍尔效应等问题的研究中广泛应用。 非对角长程序 1962年,杨振宁提出“非对角长程序(off-di-agonal long-range order)”的概念,从而统一刻画超流和超导的本质,同时也深入探讨了磁通量子化的根源。这是当代凝聚态物理的一个关键概念。1989到1990年,杨振宁在与高温超导密切相关的Hubbard模型里找到具有非对角长程序的本征态,并和张首晟发现了它的SO(4)对称性。 弱相互作用中宇称不守恒 对称性是物理学之美的一个重要体现,是20世纪理论物理的主旋律之一。从经典物理以及晶体结构,到量子力学与粒子物理,对称性分析是物理学中的有力工具。杨振宁对粒子物理的诸多贡献表现出他对对称性分析的擅长。 他往往能准确利用对称性,用优雅的方法很快得到结果,并且突出本质和巧妙之处。1999年,在石溪(Stony Brook)的一次学术会议上,杨振宁被称为“对称之王(Lord of Symmetry)”。1950年,杨振宁关于p0衰变的论文以及他和Tiomno 关于β衰变中相位因子的论文奠定了他在此领域中的领先地位。1956年,θ-τ之谜是粒子物理学中最重要的难题,当时普遍讨论宇称是否可以不守恒。杨振宁和李政道从θ-τ之谜这个具体的物理问题走到一个更普遍的问题,提出“宇称在强相互作用与电磁相互作用中守恒,但在弱相互作用中也许不守恒”的可能,将弱相互作用主宰的衰变过程独立出来,然后经具体计算,发现以前并没有实验证明在弱相互作用中宇称是否守恒。他们更指出了好几类弱相互作用关键性实验,以测试弱相互作用中宇称是否守恒。吴健雄于1956年夏决定做他们指出的几类实验中的一项关于60Co β衰变的实验。次年1月,她领导的实验组通过该实验证明在弱相互作用中宇称确实不守恒,引起全物理学界的大震荡。因为这项工作,杨振宁和李政道获得1957年的诺贝尔物理学奖。 时间反演、电荷共轭和宇称三种分立对称性 因为质疑弱相互作用中宇称是否守恒的论文预印本,所以Oehme于1956年8月致信杨振宁提出弱相互作用中宇称(P)、电荷共轭(C)、时间反演(T)三个分立对称性之间的关系的问题。这导致杨振宁、李政道和Oehme发表论文57e,讨论P、C、T各自不守恒之间的关系。此文对1964年CP不守恒的理论分析有决定性的作用。 高能中微子实验的理论探讨 1960年,为了得到更多弱相互作用实验信息,利用实验物理学家Schwartz的想法,李政道和杨振宁在理论上探讨了高能中微子实验的重要性。这是关于中微子实验的第一个理论分析,引导出后来许多重要研究工作。 CP不守恒的唯象框架 1964年,实验上发现CP不守恒后,引发出众多乱猜其根源的文章。杨振宁和吴大峻没有理会那些脱离实际的理论猜测,而作了CP不守恒的唯象分析,建立了后来分析此类现象的唯象框架。这反映了杨振宁脚踏实地的作风,也明显显示出他受到的Fermi的影响。 杨—Mills规范场论 1954年,杨—Mills规范场论(即非阿贝尔规范场论)发表。这个当时没有被物理学界看重的理论,通过后来许多学者于20世纪60年代到20世纪70年代引入的自发对称破缺观念,发展成标准模型。这被普遍认为是20世纪后半叶基础物理学的总成就。杨振宁和Mills的论文,从数学观点讲,是从描述电磁学的阿贝尔规范场论到非阿贝尔规范场论的推广。而从物理观点上讲,是用此种推广发展出新的相互作用的基础规则。在主宰世界的4种基本相互作用中,弱电相互作用和强相互作用都由杨—Mills理论描述,而描述引力的爱因斯坦的广义相对论也与杨—Mills理论有类似之处。杨振宁称此为“对称支配力量”。杨—Mills理论是20世纪后半叶伟大的物理成就,杨—Mills方程与Maxwell方程、Einstein方程共同具有极其重要的历史地位。 规范场论的积分形式 杨—Mills理论还把物理与数学的关系推进到一个新的水准。1970年左右,杨振宁致力于研究规范场论的积分形式,发现了不可积相位因子的重要性,从而意识到规范场有深刻的几何意义。 规范场论与纤维丛理论的对应 1975年,杨振宁和吴大峻发表了论文75c,用不可积相位因子的概念给出了电磁学以及杨—Mills场论的整体描述,讨论了Aharonov—Bohm效应和磁单极问题,揭示了规范场在几何上对应于纤维丛上的联络。这篇文章里面附有一个“字典”,把物理学中规范场论的基本概念准确地“翻译”成数学中纤维丛理论的基本概念。这个字典引起数学界的广泛兴趣,大大促进了数学与物理学以后几十年的成功合作。 论文:大约300篇发表于《物理评论》《物理评论通讯》等著作:《论文选集与后记1945-1980》(英文),(佛里门公司,1983)《杨振宁文集》(中文),(上海华东师范大学出版社,1998)《曙光集》(中文),(简体版,北京三联书店;繁体版,八方文化创作室,2008) 此外,还有《对弱相互作用中宇称守恒的质疑》《基本粒子发现简史》《读书教学四十年》《科学、教育和中国现代化》《科学的品格》《新世纪的科技》《20世纪的物理学》《对称与物理》等。

杨振宁,1922年10月1日出生于安徽合肥,世界著名物理学家,现任香港中文大学讲座教授、清华大学教授、美国纽约州立大学石溪分校荣休教授[1] 、中国科学院院士、美国国家科学院院士、台湾“中央研究院”院士、俄罗斯科学院院士、英国皇家学会会员,1957年获诺贝尔物理学奖;是中美关系松动后回中国探访的第一位华裔科学家,积极推动中美文化交流和中美人民的互相了解;在促进中美两国建交、中美人才交流和科技合作等方面,做出了重大贡献。主要成就 1957年获诺贝尔物理学奖 1980年获拉姆福德奖 1986年获美国国家科学奖章 1993年获本杰明·富兰克林奖章 1994年获鲍尔奖1942年,毕业于西南联合大学;1944年,获清华大学硕士学位;1945年,获庚子赔款奖学金,赴美留学;1948年,获芝加哥大学哲学博士学位,任芝加哥大学讲师、普林斯顿高等研究院研究员;1955年,任美国普林斯顿高等学术研究所教授;1966年,任美国纽约州立大学石溪分校教授兼物理研究所所长;1986年,任香港中文大学博文讲座教授;1998年,任清华大学教授。[3-4] 2017年恢复中国国籍。[7] 杨振宁在粒子物理学、统计力学和凝聚态物理等领域作出了里程碑性的贡献。20世纪50年代和R.L.米尔斯合作提出非阿贝尔规范场理论;1956年和李政道合作提出弱相互作用中宇称不守恒定律;在粒子物理和统计物理方面做了大量开拓性工作,提出杨-巴克斯特方程,开辟了量子可积系统和多体问题研究的新方向等[3] 。此外,杨振宁推动了香港中文大学数学科学研究所、清华大学高等研究中心、南开大学理论物理研究室和中山大学高等学术研究中心的成立。1957年获诺贝尔物理学奖 1980年获拉姆福德奖 1986年获美国国家科学奖章 1993年获本杰明·富兰克林奖章 1994年获鲍尔奖

4、我要数学家

伽罗华 伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他己经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。Galois小传:1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华。天才的童年1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗瓦街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特•伽罗瓦生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗瓦表示敬意,于1909年6月设置的。伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉•加布里埃尔•伽罗瓦参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗瓦曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”。可见父亲的政治态度和当时法国的革命热潮对伽罗瓦的成长和处事有较大的影响。伽罗瓦的母亲玛利亚•阿代累达•伽罗瓦曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗瓦的传记中,特别谈到“伽罗瓦的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗瓦在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。1823年l0月伽罗瓦年满12岁时,离开了双亲,考入有名的路易•勒•格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有“杰出的才干”,“举止不凡”,但又“为人乖僻、古怪、过分多嘴”性格的人。我们认为这种性格说明他有个性,而且早已显露出强烈的求知欲的标志。伽罗瓦在路易•勒•格兰皇家中学领奖学金,完全靠公费生活。在第四、第三和第二年级时他都是优等生,在希腊语作文总比赛中也获得好评,并且在1826年l0月转到修辞班学习。但是第二学季一开始(伽罗瓦这时刚满15岁),由于教师们认为他的体格不够强壮,校长认为他的判断力还有待“成熟”,他不得不回到二年级。重修二年级,使伽罗瓦有机会毫无阻碍地被批准去上初级数学的补充课程。自此他把大部分时间和主要精力用来研究、探讨数学课本以外的高等数学。伽罗华经常到图书馆阅读数学专著,特别对一些数学大师,如勒让德的《几何原理》和拉格朗日的《代数方程的解法》、《解析函数论》、《微积分学教程》进行了认真分析和研究,但他并未失去对其他科目的兴趣。因此,当1827年伽罗瓦回到修辞班时,他的全面发展甚至比他的数学的天分在同学之中更加出人头地了。但是他对其它科目的教科书的内容以及教师所采用的教学法之潦草马虎感到愤怒。所以有的教师认为他被数学的鬼魅迷住了心窍,有的教师用七个字“平静会使他激怒”来形容他的行为。这时伽罗瓦已经熟悉欧拉、高斯、雅可比的著作,这更提高了他的信心,他认为他能够做到的,不会比这些大数学家们少。到了学年末,他不再去听任何专业课了,而在独立地准备参加取得升入综合技术学校资格的竞赛考试。结果尽管考试失败,但1828年10月,他仍然从中学初级数学班跳到里夏尔的数学专业班。路易•勒•格兰中学的数学专业班教师里夏尔,在科学史上,他作为一个很有才华的教师使人追念。里夏尔不仅讲课风格优雅,而且善于发掘天才。他遗留下的笔记中记载着:“伽罗瓦只宜在数学的尖端领域中工作”,“他大大地超过了全体同学”。里夏尔帮助伽罗瓦于1828年在法国第一个专业数学杂志《纯粹与应用数学年报》三月号上,发表了他的第一篇论文—《周期连分数一个定理的证明》,并说服伽罗瓦向科学院递送备忘录。1829年,伽罗瓦在他中学学年快要结束时,把他研究的初步结果的论文提交给法国科学院。1829年,中学学年结束后,伽罗瓦刚满18岁,他在报考巴黎综合技术学校时,由于在口试中主考的教授比内和勒费布雷•德•富尔西对伽罗瓦阐述的见解不理解,居然嘲笑他。伽罗瓦在提及这次考试时,曾写道,他不得不听“主考人的狂笑声”。据说“由于被狂笑声所激怒”,他把黑板擦布扔到主考人头上,或是因为他拒绝回答有关关于对数这样的过于简单的问题,所以再次遭到落选,伽罗瓦仍然是一个非正式的预备生。1829年7月2日,正当伽罗瓦准备入学考试时,他的父亲由于受不了天主教牧师的攻击、诽谤而自杀了。这给了伽罗华很大的触动,他的思想开始倾向于共和主义。其后不久,伽罗华听从里夏尔的劝告决定进师范大学,这使他有可能继续深造,同时生活费用也有了着落。1829年10月25日伽罗华被作为预备生录取入学。进入师范大学后的一年对伽罗瓦来说是最顺利的一年,1828年他的科学研究获得了初步成果。伽罗瓦写了几篇大文章,并提出自己的全部著作来应征科学院的数学特奖。但在这里,他又一次遭到了新挫折:伽罗瓦的手稿原来交给科学院常任秘书傅立叶,傅立叶收到手稿后不久就去世了。因而文章也被遗失了。这些著作的某些抄本落到数学杂志《费律萨克男爵通报》的杂志社手里,并在1830年的4月号和6月号上把它刊载了出来。在师范大学学习的第一年,伽罗瓦结认了奥古斯特•舍瓦利叶,舍瓦利叶直到伽罗瓦临终前一直是他的唯一亲近的朋友。1830年7月,伽罗瓦将满19岁。他在师范大学的第一年功课行将结束。他这时写成的数学著作,已经使人有可能对他思想的独创性和敏锐性作出评价。数学世界的顽强斗士19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一。历史上人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶在他所著的《数书九章》的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到了高次方程的一般解法。在西方,直到十六世纪初的文艺复兴时期,才由意大利的数学家发现一元三次方程解的公式——卡当公式。在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。法国数学家拉格朗日更是称这一问题是在“向人类的智慧挑战”。1770年,拉格朗日精心分析了二次、三次、四次方程根式解的结构之后,提出了方程的预解式概念,并且还进一步看出预解式和方程的各个根在排列置换下的形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理论,给出了高于四次的一般代数方程不存在代数解的证明。伽罗瓦通过改进数学大师拉格朗日的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析。这个理论的大意是:每个方程对应于一个域,即含有方程全部根的域,称为这方程的伽罗华域,这个域对应一个群,即这个方程根的置换群,称为这方程的伽罗华群。伽罗华域的子域和伽罗华群的子群有一一对应关系;当且仅当一个方程的伽罗华群是可解群时,这方程是根式可解的。1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作报告……但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作,这是一个非常微妙的“事故”。1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖。论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作,当时负责审查的数学家泊阿松为理解这篇论文绞尽脑汁。传说泊阿松将这篇论文看了四个月,最后结论居然是“完全不能理解”。尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。对事业必胜的信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚持他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索。天才的陨落伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路易•腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织“人民之友”的成员,并发誓:“如果为了唤起人民需要我死,我愿意牺牲自己的生命”。伽罗瓦敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗华对师范大学教育组织极为不满。由于他揭发了校长吉尼奥对法国七月革命政变的两面派行为,被吉尼奥的忠实朋友,皇家国民教育委员会顾问库申起草报告,皇家国民教育委员会1831年1月8日批准立即将伽罗瓦开除出师范大学。之后,他进一步积极参加政治活动。1831年5月l0日,伽罗华以“企图暗杀国王”的罪名被捕。在6月15日陪审法庭上,由于共和党人的律师窦本的努力,伽罗瓦被宣告无罪当场获释。七月,被反动王朝视为危险分子的伽罗华在国庆节示威时再次被抓,被关在圣佩拉吉监狱,在这里庆祝过他的20岁生日,渡过了他生命的最后一年的大部分时间。在监狱中伽罗华一方面与官方进行不妥协的斗争,另一面他还抓紧时间刻苦钻研数学。尽管牢房里条件很差,生活艰苦,他仍能静下心来在数学王国里思考。伽罗瓦在圣佩拉吉监狱中写成的研究报告中写道:“把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类,这就是我所理解的未来数学家的任务,这就是我所要走的道路。”请注意到“把数学运算归类”这句话,道出了他的理想、他的道路。毋庸置疑,这句话系指点目前所称的群论。由于其后好几代数学家的工作,最终才实现了伽罗瓦的理想。正是他的著作,标志着旧数学史的结束和新数学史的开始。l832年3月16日伽罗华获释后不久,年轻气盛的伽罗华为了一个舞女,卷入了一场他所谓的“爱情与荣誉”的决斗。伽罗华非常清楚对手的枪法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他不时的中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一片新的天地。伽罗华对自己的成果充满自信,他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性,而是对这些定理的重要性发表意见。我希望将来有人发现,这些对于消除所有有关的混乱是有益的。”第二天上午,在决斗场上,伽罗华被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去”。他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑就是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。历史学家们曾争论过这场决斗是一个悲惨遭的爱情事件的结局,还是出于政治动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他20岁时被杀死了,他研究数学才只有五年。群论——跨越时代的创造伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义。刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐。1870年法国数学家约当根据伽罗华的思想,写了《论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗华理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具—群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。伽罗瓦非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题。这是伽罗瓦工作中的第一个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的彗星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗瓦理论”,从而彻底解决了一般方程的根式解难题。作为这个理论的推论,可以得出五次以上一般代数方程根式不可解,以及用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能等结论。对伽罗华来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。在这里,我们后人感受到的是一种孤独与悲哀,一种来自智慧的孤独与悲哀。但是,历史的曲折并不能埋没真理的光辉。今天由伽罗华开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响。 克莱罗 Clairaut,Alexis-Claude(1713~1765)法国数学家,物理学家。又译克莱洛。1713年5月7日生于巴黎,1765年5月17日卒于同地。9岁时,父亲就教他学习解析几何和微积分学,16岁被选入法国科学院。他在研究天体力学三体问题时,第一个给出了这个问题的近似解(1752~1754)。1705年,E.哈雷曾预测哈雷彗星将在 1758年或1759年出现。克莱罗于1758年提前半年相当精确地计算了哈雷彗星到达近日点的日期,为此获彼得堡科学院的奖。克莱罗是最早研究二重曲率曲线的人之一,他还研究了曲面的平面截线。他在1734年建立了克莱罗微分方程。1739~1740年间证明了混合二阶偏导数的求导次序的可交换条件,还证明了一阶线性微分方程的积分因子的存在性问题。他在力学方面的工作还包括单摆振动等时性的证明和对运动中物体的动力学和相对运动的研究。

参考资料:/info/K/K0492.htm

苏步青(1902-2003),浙江平阳人。1927年毕业于日本东北帝国大学数学系,后入该校研究院,获理学博士学位。回国后,受聘于浙江大学数学系。1952年全国院系调整,到复旦大学任教,任教务长、副校长、校长等职,1983年起任复旦大学名誉校长。历任第七、八届全国政协副主席,第五、六届全国人大常委,民盟中央副主席。1955年当选为中国科学院数学物理学部委员,兼任学术委员会常委,专长微分几何,创立了国内外公认的微分几何学派。撰有《射影曲线概论》、《射影曲面概论》等专著10部。研究成果“船体放样项目”、“曲面法船体线型生产程序”分别荣获全国科学大会奖和国家科技进步二等奖。 苏步青是中国现代数学家,中国数学会的发起人之一,担任过中国数学会学报的主编,参与筹建中国科学院数学研究所,后又创办复旦大学数学研究所,创办《数学年刊》杂志并任主编。 苏步青中学毕业后去日本求学,1927年毕业于日本东北帝国大学数学系,随后进入该校研究院,1931年获理学博士,同年回国。 他的主要研究领域为微分几何学。 早期对仿射微分几何学和射影微分几何学作出了突出贡献。他建立了独到的方法,用几何构图来表现曲线和曲面的不变量和协变图形,取得了丰富的成果,如仿射曲面论中的锥面、射影曲线的一般的协变理论、射影曲面论中的Q1伴随曲面、主切曲线属于一个线性丛的曲面、射影极小曲面和闭拉普拉斯序列等方面的研究,得到了国际上的高度评价。 四、五十年代开始研究一般空间微分几何学,特别是一般面积度量的二次变分的计算和 K展空间。 60年代又研究高维空间共轭网理论,获得系统而深入的成果。 70年代以来,苏步青又注意把微分几何运用于工程中的几何外型设计,在中国开创了新的研究方向——计算几何。 苏步青历任浙江大学教授、数学系主任;历任复旦大学教授、教务长、数学研究所所长、研究生部主任、副校长、校长和名誉校长。中华人民共和国成立后任该校教务长。他和陈建功教授共同把浙江大学和复旦大学的数学系建成一个具有相当高水平的教学和科学研究的基地,为国家培养出许多优秀的数学人才。在他的领导下,形成了具有特色的微分几何研究集体。 苏步青一共发表论文168篇,出版了《苏步青论文选集》、《射影曲线概论》、《射影曲面论》、《一般空间微分几何学》、《计算几何》等专著,有的已在国外翻译出版。 苏步青同志因病于2003年3月17日16时45分在上海逝世,享年101岁。 数学家,中国科学院院士。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家.本回答被提问者采纳

5、应用数学毕业论文

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系本回答被网友采纳

6、欧拉生平!!急

欧拉 (Leonhard Euler 公元1707-1783年) 欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身". 欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年. 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了. 1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了. 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久. 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题. 欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算". 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等. 数学家欧拉 欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。 欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。 尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。 欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式: ,又把三角函数与指数函联结起来。 在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。 欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。 欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。 在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。 古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。 同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。 正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题——计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。 他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。 自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。 这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支——变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。 欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。 历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。 由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。数学家欧拉 欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。 欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。 尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。 欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式: ,又把三角函数与指数函联结起来。 在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。 欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。 欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。 在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。 古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。 同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。 正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题——计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。 他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。 自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。 这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支——变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。 欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。 历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。 由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。欧拉生平 欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。 1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。 欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。欧拉生平欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。 1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。公元1707~公元1783 十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。 欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。 早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流体运动,建立了流体力学方程。同样他通过认真分析刚体的可能运动并应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。 欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题——二十一世纪仍要面临的一个问题——尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。 欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家琼·巴普蒂斯特·傅里叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里时方程。这套方程在物理学的许多不同的领域都有着广泛的应用,其中包括声学和电磁学。 在数学方面他对微积分的两个领域——微分方程和无穷级数——特别感兴趣。他在这两方面做出了非常重要的贡献,但是由于专业性太强不便在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式eiQ=cosθ十isinθ表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。 欧拉不仅在做可应用于科学的数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。 最后要提到的一点也很重要,欧拉对目前使用的数学符号制做出了重要的贡献。例如,常用的希腊字母π代表圆周率就是他提出来的。他还引出许多其它简便的符号,现在的数学中经常使用这些符号。 欧拉于1707年出生在瑞士巴塞尔。1720他十三岁时就考入了巴塞尔大学,起初他学习神学,不久改学数学。他十七岁在巴塞尔大学获得硕士学位,二十岁受凯瑟林一世的邀请加入圣彼得斯堡科学院。他二十三岁成为该院物理学教授,二十六岁就接任著名数学家但尼尔·伯努利的职务,成为数学所所长。两年后,他有一只眼睛失明,但仍以极大的热情继续工作,写出了许多杰出的论文。 1741年普鲁士弗雷德里克大帝把欧拉从俄国引诱出来,让他加入了柏林科学院。他在柏林呆了二十五年后于1766年返回俄国。不久他的另一只眼睛也失去了光明。即使这样的灾祸降临,他也没有停止研究工作。欧拉具有惊人的心算才能,他不断地发表第一流的数学论文,直到生命的最后一息。1783年他在圣彼得斯堡去逝,终年七十六岁。欧拉结过两次婚,有十三个孩子,但是其中有八个在襁褓中就死去了。 即使没有欧拉其人,他的一切发现最终也会有人做出。但是我认为做为衡量这种情况的尺度应该提出这样的问题:要是根本就没有人能做出他的发现,科学和现代世界会有什么不同呢?就伦哈特·欧拉的情况而言,答案看来很明确:假如没有欧拉的公式、方程和方法,现代科学技术的进展就会滞后不前,实际上看来是不可想象的。浏览一下数学和物理教科书的索引就会找到如下查照:欧拉角(刚体运动)、欧拉常数(无穷级数)、欧拉方程(流体动力学)、欧拉公式(复合变量)、欧拉数(无穷级数)、欧拉多角曲线(微分方程)、欧拉齐性函数定理摘微分方程)、欧拉变换(无穷级数)、伯努利—欧拉定律(弹性力学)、欧拉—傅里叶公式(三角函数)、欧拉—拉格朗日方程(变分学,力学)以及欧拉一马克劳林公式(数字法),这里举的仅仅是最重要的例子。 从所有这一切来看,读者可能要问为什么在本书中没有把欧拉的名次排得更高些,其主要原因在于虽然欧拉在论证如何应用牛顿定律方面获得了杰出的成就,但是他自己从未发现任何独创的科学定律,这就是为什么要把威廉·康拉德,伦琴和格雷戈尔·孟德尔这样的人物排在他前面的原因。他们每个人主要是发现了新的科学现象或定律。尽管如此,欧拉对科学、工程学和数学的贡献还是巨大的。

7、研究生发表的论文毕业后有用吗

在学校发的论文,有的学校会根据杂志的影响因子给予一定的积分和经济奖励。毕业后这些论文就没什么用了,单位评职称都是看你在入职后发表的论文,而且是要和业务相关的文章,不会看你以前的论文。不过,你要是想到高校或研究所工作,多往影响因子高的杂志上发表一些论文,找工作的时候会有一定帮助。有用,这论文跟你一辈子的,对以后评职称肯定有优势论文是很重要的一件事情,代表你对人类科学发展的贡献哈。会跟着你走一辈子,一旦写的很牛B,被SCI收录,光环就会跟着你一生。

发表论文对毕业生有什么好处

8、研究生论文毕业后复审

复审为对学位论文终稿的主体部分进行检测等。

以潍坊医学院为例,研究生论文复审论文答辩后修改并提交研究生处准备印刷的学位论文终稿(PDF电子版、word电子版、纸质版)。对学位论文终稿的主体部分进行检测,重复率≥15%的博士学位论文、≥20%的硕士学位论文不予提交校学位评定委员会审议。

所有学位论文的撰写应严格按照《潍坊医学院研究生学位论文撰写规范》执行,包括论文封面格式、论文结构要求、参考文献著录格式、论文排版要求等。形式审查不合格者需重新排版打印。

扩展资料:

硕士学位论文答辩后实施复审的相关要求规定:

1、答辩委员会及论文评阅专家认为学位论文必须修改者,研究生应根据答辩委员会及论文评阅专家对论文提出的意见进行修改,并提交书面修改说明,需要修改但未修改者不予提交学校学位评定委员会(研究生处将聘请专家根据论文评阅书、答辩记录及修改情况进行复审)。

2、电子版论文和纸质版论文不相符或学位论文中部分文字采用图片形式插入等任何故意规避重合率检测皆属学术不端行为,按《潍坊医学院学位论文作假行为处理办法实施细则》(潍医研字〔2015〕4号)文件规定进行处理。

3、导师要加强对学生的教育与指导,督促检查学生对其答辩后的论文按照学校规定予以修改完善,不断提高论文质量。导师要对修改后的论文进行审查,并在论文封面上签字确认。

参考资料来源:潍坊医学院-关于对博士硕士学位论文答辩后实施复审的通知

毕业后几年会复审的,如果复审发现某人的论文有问题,严重的可能会撤销已经颁发的学位。这几年有好些这种事情发生,不过概率还是很小的。但是,作为研究生,论文还是好好写比较好,否则对不起自己几年的研究生学习,更对不起自己的硕士研究生那个称号!祝愿你一切顺利,前程似锦!本回答被提问者采纳毕业后几年会复审的,如果复审发现某人的论文有问题,严重的可能会撤销已经颁发的学位。这几年有好些这种事情发生,不过概率还是很小的。但是,作为研究生,论文还是好好写比较好,否则对不起自己几年的研究生学习,更对不起自己的硕士研究生那个称号!祝愿你一切顺利,前程似锦!本回答被网友采纳研究生本人并没有什么好处呢? 在学校发的论文,有的学校会根据杂志的影响因子给予一定的积分和经济奖励。毕业后这些论文就没什么用了,单位评职称都是我其实也想知道,但是你能不能告诉我怎么进行复审吗?我们正在进行数学建模急需这方面的资料,谢谢了~~~~

9、跪求一篇数学的research proposal!!

一:数学史上的三次危机。  毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。  第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。  罗素悖论与第三次数学危机。  十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”  可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。  罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。  其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。  危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。  二:经典数学问题:七桥问题  著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。  有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。  当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。  Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。  后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。  七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.  欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。  接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!  1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。  数学的世界奥妙无穷,大家尽情驰骋吧!  附录:永远的大师—欧拉  欧拉(Euler,1707-1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。 欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。  欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。  1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。  在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府 的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。  1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。  欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他 是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典着作。  欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生 与发展奠定了基础。  欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出ξ函数在偶数点的值: 。他证明了a2k是有理数,而且可以伯努利数来表示。  此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,,其值近似为 0.57721566490153286060651209...  在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程学。当中,在常微分方程方面,他 完整地解决了n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是 偏微分方程在纯数学研究中的第一篇论文。  在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给 出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为 z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数 ,这些符号至今仍通用。此外,在该着作中,他亦得到了曲面在任意截面上截线的曲率公式。  欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积 分等等。  在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定 理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的柯尼斯 堡七桥问题。  欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。  (转载)评论|20single3y |八级采纳率37%擅长:手机购买生活常识系统软件娱乐休闲社会民生按默认排序|按时间排序其他6条回答检举|2010-10-09 18:39冰枫梦蝶|二级一:数学史上的三次危机。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。更多在/question/188566643.html更多追问追答追问

能不闹吗?追答

呵呵 对不起了追问

。。。追答

真的对不起 不是故意想闹

10、本人数学系,想考计算机图形学的研究生,请问我毕业论文改选下面哪项 (无满意答案不给分,多谢大家)

图形学里用到的数学知识主要是微积分(必备基础),线性代数(模型变换的基础),最优化理论与方法(写论文做研究的基础),微分几何,有限元,随机过程等等,还有更多数学知识在不断地被应用到这个学科中来,其中前三个属于基础。你的提供的论文题目,对于图形学来说可能都过于专业,对图形学来说,感兴趣的题目可能有:浅谈Monte Carlo 方法及其应用(2005还是2006 siggraph有一篇文章用到过) 一类随机过程的统计与参数估计一类球面调和函数模型的ILr-最优设计其实数学系的数学基础对于图形学一般是够用的,选择能够证明你的实力的题目就好。比如下面的题目也是不错的一个奇摄动转点问题的拟线性化方法(良好的常微分方程基础)二阶微分方程的微分变换法与幂级数解法 (良好的常微分方程基础)一个(待定)模型解的渐近分析;本回答由提问者推荐乖乖!这么专业的问题呀!你去得找读研的朋友给你看看呀!你去研友网或研究生吧发个帖子找个研究生朋友吧!烟酒生可忙不了你,祝你好运!没那么复杂的。建议做计算机交互式图形你可以去问问论坛!



欧拉 数学 数学家 方程 论文 天文学家 理论

上一篇:毕业论文基本观点怎写与毕业论文的主要观点写什么
下一篇:自考华师毕业论文要答辩吗与自考毕业论文怎么答辩