你可以到淘宝网搜索店铺:职称毕业论文写作服务论文下载店 老板人很热情的,我的同学都是在他那里下载或者写作的。本回答由提问者推荐
因为合成氨的反应的原料为氢气和氮气,而半水煤气的主要成分除了氢外主要是CO(一氧化碳),通过变换工段,在触媒的作用下,一氧化碳与水反应生成氢气,成为合成氨的原料之一。追问
那二改一是干啥的本回答由提问者推荐变换工段是将一氧化碳变换成二氧化碳
我的邮箱是sinpp1986@163.com,你把你的地址告诉我吧,我毕业时就是做的合成氨变换工段的设计!
我给你一个提纲西安交通大学工程硕士学位论文选题报告书论文选题名称: 姓 名: 研 究 方 向: 指 导 教 师: 入 学 时 间: 2003年9月选题报告时间: 2006年5月一、本研究课题的科学依据和意义(包括科学意义,国内外研究概况,水平和发展趋势,学术思想,理论根据。)。一、立项理由、目的、意义我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。二、国内外概况及发展趋势 自动化技术包括生产过程控制自动化和事务经营管理自动化两个方面,属于当今世界迅速发展和日趋成熟的高新技术。自动化技术的不断发展也丰富了各种控制软件的发展,特别是优化控制从理论走向了实际。随着微电子计算机、自动化理论和信息技术的日新月异,国外企业采用最新的PC技术发展的DCS系统已普遍应用到各行业生产装置上去,特别在应用DCS的同时,发展了许多实用的优化软件。在国外,合成氨生产的发展大致可分为五个阶段:Ⅰ发明阶段;Ⅱ技术推广阶段;Ⅲ原料结构变迁阶段;Ⅳ单系列大型化阶段;Ⅴ节能降耗阶段。与工艺相适应的自动化技术也不断发展,特别是第Ⅲ阶段,不同的工艺出现对控制任务提出不同的要求,鉴于当时的仪表条件、控制理论发展情况,主要针对一些重要的工艺参数设置一些简单的控制回路,并逐步发展为一些串级、比值控制回路。如作为先进的控制方案推广离不开计算机的发展,采用计算机控制系统后,随着计算机的发展,一方面一些控制系统得以有效实现,另一方面也为优化操作提供了硬件基础。针对合成氨厂的特点,一些非线性滤波采用了计算机辅助优化控制取得了成功,带来了合成氨生产的明显提高。目前,世界上许多氨厂都采用了计算机控制或DCS系统。合成氨厂的控制水平达到了一定高度,而且优化和计算机管理的研究和应用达到了一定程度,增加了产量,降低了成本,提高了效率。二、 拟采取的研究方法和技术路线(包括研究工作的总体安排和进度,计算、实验方法和步骤及其可行性论证,可能遇到的问题和解决办法。)采用的研究方法为:先进行理论研究,从合成氨的工艺要求和生产设备具体提点入手,分析应该优化的装置和重点回路。从重点回路出发更具体的分析每一个优化参数所要关联的参数,了解和分析这个参数优化前的控制方法,在此基础上制定新的控制方法,并能用先进控制方法使其得到优化。写出控制方案,画出控制方框图。在此基础上编制控制程序。将控制程序输入到DCS系统,并进行离线调试和在线调试,并将优化程序投入运行。记录投入运行优化控制系统前的参数运行曲线和投入优化控制系统后的运行曲线。分析优化系统的运行情况,提出进一步的修改意见。重复上述过程,进行第二次实验。直到达到满意的效果。工作计划:制定详细技术实施方案(1项目论证及前期调研、2方案设计和论证、3编制详细实施方案、4绘制有关设计图纸等);编制软件;软件调试和投运;软件运行考核;操作培训和技术交流;项目鉴定及归档资料。完成以上工作大约需要1年时间。可能遇到的困难和解决方法:可能遇到的实际困难是:不同的厂家的工艺差异性,使得优化系统不能通用,须针对具体情况和现场状况作进一步的修正和补充。由于工艺状况的复杂性,同一个被控参数,由于原料的变化、时间的推进、成分的变化等一些不可控因素的出现,使其不能达到优化的效果。尽可能将所有的影响参数引入优化系统。让不可控因素越少越好。三、本项目的特色与创新之处。从八十年代开始,计算机控制系统和DCS系统逐步引进到我国生产过程控制中来,特别是化肥行业,90%以上的大化肥企业都引进了国外的DCS系统,80%以上的中化肥企业也都应用了国外的DCS系统,30-40%的小化肥企业也在部分装置上引进了国内及国外的控制系统。从DCS系统的引进情况看,大部分企业只是用DCS系统代替了原有的仪表系统,有小部分企业在个别回路做了一定的开发工作,总体看来,DCS的应用远远没有发挥其强大的功能优势。对于合成氨装置,该装置的最大特点是工艺流程长,反应在高温、高压下进行,自动化设计比较简单,手动操作率高。为了更好控制整个合成氨装置的运行,使整个生产能够达到节能、降耗、稳定、高产的目的,必须在原有初步设计的基础上,根据工艺操作的需要,进一步开发和利用DCS系统强大的软件功能,把现代控制理论中一些比较先进的控制算法,应用到合成氨装置中去。四、预期研究成果。由于化肥生产装置是综合化、大型化、连续化的生产方式,流程结构复杂。我国合成氨厂的规模在不断扩大,对于这样装置能否实现最优设计、最优控制,对基本建设投资、安全生产、产品的成本等都将有很大的影响。合成氨装置中合成工段和变换工段以及造气工段的优化控制软件和硬件,其目的是利用计算机的手段对装置进行节能降耗,提高化肥厂的生存和竞争能力。 由于国内中小化肥装置均为非优化设计,各设备未经过正规的流程模拟,在加上装置改造一直在进行当中,操作条件(工艺参数)基本上都是根据经验确定,所以优化的难度比较大,同时优化的潜力也很大。 优化控制就是要在线优化操作参数,在现有工艺流程和设备的条件下,利用计算机对生产装置进行操作参数的优化,进行卡边操作,节能降耗,降低每吨氨的生产成本,实现装置的利润最大化。优化控制是企业挖潜增效的新的有效手段。采用数学模型的手段和多变量优化算法,通过建立造气、变换系统和合成系统的数学模型,实现了造气、变换岗位和合成岗位的在线优化控制。五、已有的研究基础。天华化工机械自动化研究设计院是长期从事化工自动化和仪表的专业性研究单位。从事化肥过程控制已有30多年的经验。有一支技术力量雄厚的专业研究队伍。从八十年代开始就着力于优化控制系统研制和应用,先后在刘家峡化肥厂、河北易县化肥厂、安阳化肥厂、柳州化肥厂、山东红日集团等几家合成氨装置中都设计并运用了比较DCS系统,取得了比较满意的效果。在DCS开发方面也积累了相当丰富的经验,先后开发和应用了横河公司的YEWPARK MARKⅡ、μXL、CENTUM-XL、CS-1000,美国Honey well公司的TDC-2000、TDC-3000、Micro-3000、GUS等系统;美国Rosement 公司的RS3,PROVAX;德国西门子的PLC、PCS等。 本人自毕业以来,一直从事化肥检测与控制的研究和应用工作。先后承担了安阳化肥厂、柳州化肥厂、山东红日集团、金昌化工集团等单位DCS系统的设计、组态、编程和应用工作。并且在部分控制回路中已成功地应用了比较先进的控制方法。取得了比较满意的效果。在系统集成、控制优化方面积累了一定的经验和方法。另外,有导师、同行们的支持和帮助,我相信,经过努力一定能把这个项目做好。六、主要参考文献目录。1 《小型合成氨厂生产操作问答》;杨春升,化学工业出版社2 《小型合成氨厂生产工艺与操作》;王师祥、杨保和,化学工业出版社。3 《 TDC-3000系统操作手册》 Honeywell公司。4 《集散型控制系统的设计与应用》;王常力、廖道文,清华大学出版社。5 《新型控制系统》;俞金寿, 化学工业出版社。6 《现代控制理论基础》;王照林,国防工业出版社。7 《化工仪表及自动化》论文集8 《全国第五次化肥仪表自动化技术交流会以论文集》;化学工业部化肥司 9 《DCS、PLC及现场总线论文集》綦希林。七、 副导师意见副导师(签名) : 年 月 日 八、导师意见导师(签名) : 年 月 日
需要提供压力,换热面积等参数。追问
1,介绍换热器发展概况 2 换热器总体方案选择 3 工艺设计计算 4 强度设计计算(筒体、封头、换热器及管板强度设计、温度应力计算及校对、设置膨胀节计算及选型、开孔补强设计计算)5 运行中的典型事故及处理 6主要参考文献 设计参数:年产24万吨合成氨,压力: 管程1.95Mpa 壳程2.1Mpa 温度:壳程进口40摄氏度,出口125摄氏度 管程进口210摄氏度 换热面积可以自己选吧
因毕业设计需要,现急需一幅合成氨变换工段的工艺流程图,中变串低变,带问题补充:要CAD的带控制点的工艺流程图你们同学有做甲烷化工段的吗?罐体
年产10万吨苯乙烯工艺初步设计亚硫酸生产工艺设计(1万吨年)乙醛生产工艺设计(8万吨/年)膜法除硝中淡盐水的预处理硫铁矿制硫酸工艺初步设计·年产十万吨PVC中HCl工序的工艺设计 ·年产10万吨乙炔洁净工艺设计 ·年产10万吨乙炔工艺设计 ·20万吨聚氯乙烯生产工艺 ·脉冲激光沉积法(PLD)制备非晶态BZN薄膜的研究论文题目都好大啊,这个能做好你就可以博士毕业了,你是哪个学校的啊?
固定床煤气炉是合成氨装置的“龙头”设备,传统的生产工艺为空气、蒸汽间歇制气;近年来,富氧空气、蒸汽连续制气工艺为合成氨装置提供了技术改造的新途径。技术改造后的煤气炉可根据炉况或工艺条件实现两种制气模式的切换。其中,富氧制气具有产气量高,煤耗、汽耗低的优势。因此,结合煤气炉多制气模式的工艺与自动化改造是目前合成氨企业节能降耗的主要措施之一。煤气炉间歇制气虽然已采用了DCS控制,但其生产操作与控制仍主要依赖于人工经验,存在着运行平稳性差、炉况波动大、劳动强度高等问题。另一方面,富氧制气生产是一项新工艺,尚无成熟的过程控制解决方案。基于此,根据煤气炉两种制气工艺特点,开发基于预测控制和智能控制的先进控制系统,实现了生产过程的精细化控制,减少了设备故障率,以达到稳定炉况、提高产气量、降低煤耗与汽耗、减少劳动强度、提高经济效益的目的。先进控制策略合成氨装置煤气炉先进控制系统采用浙江中控软件技术有限公司的先进控制软件APC-Sutie。该先进控制系统适用于多台间歇制气与富氧制气并联生产的煤气炉。其总体结构如图1所示。图1 合成氨装置煤气炉先进控制系统总体结构煤气炉间歇制气先进控制:通过对加煤量、炉条机转速、吹风时间、上吹时间、下吹时间等的合理调节,稳定煤气炉的火层位置、炭层高度、上行温度、下行温度、灰仓温度等关键工艺指标,从而有效地防止炉况恶化,稳定并提高产气量。同时通过合理调整煤气炉加氮时间,克服滞后和干扰因素的影响,实现对合成塔循环氢氢氮比的平稳控制,有效降低合成氨装置的综合能耗。煤气炉富氧制气先进控制:通过对加煤量、炉条机转速、蒸汽量、富氧空气量的合理调节,实现对煤气炉炭层高度、上行温度、灰仓温度等关键工艺参数的平稳控制。并根据煤气炉关键工艺指标的变化优化调整蒸汽和富氧空气量的配比,稳定炉况,提高产气量,同时也大幅度降低操作劳动强度。炉况智能诊断专家控制:利用煤气炉生产实时数据和历史信息,建立炉况实时监控和智能诊断系统,通过跟踪关键工艺指标的变化,及时发现并处理异常炉况,维持稳定的煤气炉火层位置,防止出现炉况恶化、设备故障等极端情况,为煤气炉的平稳生产提供保障。应用效果合成氨装置煤气炉应用先进控制技术之后,取得了如下效果:显著提高煤气炉在间歇制气、富氧连续制气两种工况下操作平稳性,各关键工艺指标(上行温度、下行温度、煤气质量等)的标准方差平均减少30~40%以上;基于平稳操作,实现了工艺指标的“卡边”优化,使煤气中CO2含量降低2%,残碳含量降低3%;同时提高了吨煤的产气量;充分挖掘装置潜力,实现节能降耗,吨氨煤耗降低5%,吨氨汽耗降低10%;提高装置的综合自动化水平,统一操作方法,大幅度降低操作人员劳动强度;先进控制系统投运率达到95%以上。
合成氨的工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。① 一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。② 脱硫脱碳过程各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4③ 气体精制过程经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔCO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:N2+3H2→2NH3(g) =-92.4kJ/mol2.合成氨的催化机理热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:xFe + N2→FexNFexN +〔H〕吸→FexNHFexNH +〔H〕吸→FexNH2FexNH2 +〔H〕吸FexNH3xFe+NH3在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。本回答由网友推荐要得东西就值这么点分吗?
合成氨变换工段带控制点工艺流程图:
合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。
合成氨工业在20世纪初期形成,开始用氨作火炸药工业的原料,为战争服务,第一次世界大战结束后,转向为农业、工业服务。随着科学技术的发展,对氨的需要量日益增长。
不过一瞬!坟墓等着!它多贪婪!唉!让我,把额头放在你的膝上,一壁惋惜那炎夏常常白热的璀璨,细细尝着这晚秋黄色的柔光严肃的学者,还有热烈的情侣,在其成熟的季节都同样喜好本回答被提问者采纳 合成氨 煤气炉 装置 工艺 工段 催化剂 原料