欢迎来到华夏图书馆!包月下载,不限IP,随心所欲! 【加入收藏】
| 本站已稳定运行4034天

电厂汽轮机相关专业毕业论文

点击进入免费下载2022年中国知网论文


1、求汽轮机运行技师论文,要自己写的

技师论文不是用来发表的,不需要高的技术含量和复杂图表,把生产实践中的问题说清楚就行了;难点反而是履职传授和答辩,要多练哈;注意:技师论文有专门格式(找单位人力部要个格式);其他:题目、摘要、正文、结论、参考文献要有。文章内容提示:1、前言:汽轮机的起源和发展现状,运行情况概述;2、汽轮机运行种类、原理阐述;3、不足与缺点及改善对策;4、效果;5、结论本回答被提问者采纳1、前言近年来,伴随着国家经济的发展,我国在社会以及经济的各个领域都取得了显著的成果,尤其是在电力行业的成果格外突出。一般来说,工业、农业的发展都与电力的运用有密切的联系,电力已经成为人们正常生活和生产最基础的保证条件。基于当前的这种电力发展形势,对于汽轮机在试运过程中存在的缺陷进行改进和调试,并提出了具体的应对措施,以便更好地促进我国电力事业的进一步发展,满足人们日益增长的需要,促进我国经济又好又快的发展。2、主机系统2.1 做主汽门活动试验时,活动电磁阀带电但是主汽门未动作在主汽门开启的情况下,做主汽门活动试验时,试验电磁阀带电,主汽门不活动;电磁阀带电后阀体的活塞没有动作会有如下原因:油路上的电磁阀后的回油节流孔堵塞或太小;也有可能是油动机活塞下部的高压油与主汽门活动油路不通等等。检查高压主汽门活动电磁阀,将活动电磁阀拆除后,进行试验,将电磁阀接入临时电源,发现电磁阀动作正常,排除活动电磁阀的问题,检测油动机活塞下部的高压油与主汽门活动油路,发现有一个制作工艺螺丝太长,堵住了一部分油管通流面积,经处理后,进行该主汽门活动试验,主汽门关闭很慢,几乎不动,不符合要求,在这种情况下,拆下控制高压主汽门活动快慢的节流孔,节流孔为Φ0.6,与制造厂提供的图纸相符,高压油进入油动机的节流孔实际为Φ0.6,与制造厂提供的图纸一样,这显然设计不合理,进入油动机的高压油与进行主汽门活动时泄出的油的流速一样,那么油动机的油压是不会减小的,主汽门不可能关闭,因此把控制高压主汽门活动快慢的节流孔改为Φ0.8,重新进行主汽门活动试验,试验结果正常。2.2润滑油、调节系统在汽轮机组的调试工作中,汽轮机盘车均出现不同程度的损伤现象,这主要是由于盘车的转动部位以及齿轮咬合的间隙没有达到规定的要求。除此之外,机组在启动试运行时,金属杂物会对油质造成一定程度的污染。基于上述的情况,在进行盘车的安装工作时,要注意重点检查高压机组各部位之间的间隙配合情况,同时,在高压机组启动试运行之后,要及时对其油质进行详细的化验,同时对盘车的外罩进行检查,对发现的问题采取有效的措施,确保机组在运行过程中的安全状况,避免机组隐患扩大化。一般来说,汽轮机组的调节系统中同时存在低压油和高压油。对于低压油来说,其各个部位的间隙密合极为重要,在机组的安装过程中,要严格按照图纸的要求进行详细的检查。3号机组组隔膜阀上油压没有达到规定的数值,经检查发现,主要是由于滑阀复位不到位,油压小,油量过大等原因。针对这种情况,加装垫片后间隙配合合适,复位后油压恢复正常。在高压油中,其控制电磁阀的进出油口处都安装有节流孔塞,在油冲洗工作完成之后,要按照设计的图纸认真安装。在汽轮机的试运过程中,6号机组经过油冲洗工作之后,其抗燃油的流量和油压都没有达到规定的数值,导致机组的调节系统调试工作不能正常开展,经检查,发现机组调节系统的节流孔与设计存在差异,经调整之后,机组的调节系统试运工作正常开展。3、辅助系统3.1 循环水对于高压机组来说,由于其自身的容量较大,因此,在机组运行过程中所需的冷水量也较多。本厂主要采用附近的河水为工程的循环水源,在机组试运行时,机组循环水泵的流量和压力都不能满足设计的要求,造成汽轮机组满负荷运行时,凝汽器循环水温度差异大,冷却能力弱。尤其进入夏季的时候,河水温度高,凝汽器的真空值不高,对于汽轮机的安全性和经济性存在较大的影响。通过对机组主系统的检查发现,机组的水泵口和凝汽器的入口存在一定比例的高度差,水阻力与工程的设计值差异较大。同时,工程的循环管道在安装的过程中没有预留增加水泵的位置,导致水流量和压力不能得到有效的缓解,这是影响汽轮机正常生产的原因之一。3.2 凝结水一般来说,在机组凝结水系统中,普遍存在着循环管路噪音大、振动强烈等缺陷,甚至在机组运行过程中,还会出现因振动等原因造成电动门破损的现象。针对上述情况,通过重新对机组的流量进行再设计,有效的减少了电厂机组凝结水系统中因噪音或者振动造成的机组损伤。3.3 工业水在机组的调试过程中,主要采用闭式水冷却全部用户的形式。通常,此类管道系统的整体构造比较复杂,而管道的主要是由碳钢材料构成,因此,在机组的调试中,在启动时汽轮机的滤网会出现堵塞的现象。本电厂在机组调试过程中,对于管道闭式水系统循环进行了将近半个月的冲洗工作。在此过程中,由于管道采用的是斜平面式的过滤网,工业水的支撑强度以及通流的面积相对较小,导致过滤网出现堵塞严重的状况,甚至造成过滤网被冲破的现象,对工程的进度产生了一定的影响,另外有闭式冷却水系统因缓冲水箱低于回水母管问题如下:a因缓冲水箱低于系统母管最高点导致无法监视水位,系统补水是根据缓冲水箱水位反馈信号调整补水调门开度的,现在缓冲水箱一直处于高水位状态,所以系统无法自动补水;b将系统手动补满水充分排空后关闭补水阀和排空阀(此时系统压力为0.15Mpa)启动#2闭式冷却水泵,出口压力为0.30Mpa,运行约20分钟泵出口压力逐渐由0.3Mpa降至0.22Mpa(仍有下降趋势)并且水泵本体发出气蚀异响。重新开启补水阀和排空阀后泵出口压力逐渐恢复至0.28 Mpa,异响也随之消除;c将系统充分补水排空后不关闭补水阀和排空阀,让系统一直处于满水状态(此时系统压力0.30 Mpa),启动#2闭式冷却水泵,泵出口压力为0.32Mpa,运行电流为42A(额定为84.5A)关闭补水阀和排空阀后停运#2闭式冷却水泵,系统压力为0.28Mpa;d将系统充分补水排空后不关闭补水阀和排空阀(此时系统压力0.30 Mpa),启动#2闭式冷却水泵,出口压力为0.32Mpa,运行电流41A,再启动#3闭式冷却水泵,瞬间系统压力为0.6Mpa,因系统超压紧急停泵(#3、#6机发电机空冷器全部投入冷却水状态);根据上述情况得出如下结论:a当系统介质损耗到一定程度需补充时无法正常监视和及时的自动补充水源;b因缓冲水箱标高不够,不能起到缓冲和储存介质的作用,系统无法正常排空,在水泵长时间运行后系统介质无法得到及时补充,空气不能排尽,容易导致泵体发生气蚀;c如果采用边补水边排空的方法非但不能将系统空气排尽,而且会导致在同时启动两台闭式冷却水泵时(设计为两用一备),因泵入口压力过高而使系统超压,只能将缓冲水箱抬高以解决根本问题,后将缓冲水箱抬高两米,问题解决。4、紧急停机通常,机组在运行过程中,出现下列情况之一的,要及时采取停机措施:机组在动态运行中,主蒸汽管道发生意外破裂;当汽轮机的转速上升到危急遮断器应当自动采取动作时出现静止不动的现象时;机组出现异常,在运行中产生强烈的振动;能够明显听到机组设置中因为摩擦等外力产生的金属响声或者水冲击等杂音;机组轴封内发生明显的火花异常;机组内部的轴承发生冒烟或者断油的情况,导致轴承出油的温度上升至75℃或者以上;在检测设备运行时,发现轴承油压异常下降到0.08Mpa以下,启动事故油泵无效;机组的发电机发生冒烟或者爆炸的情况实话 我也不知道

2、谁能给我传篇关于电厂汽轮机或锅炉等热能方面的毕业设计论文啊?

火电厂输煤系统的任务是卸煤、堆煤、上煤和配煤,以达到按时保质、保量为机组(原煤 仓)提供燃煤的目的。整个输煤系统是火电厂十分重要的支持系统。它是保证机组稳发满发的 重要条件。 输煤系统是火电厂的重要组成部分,其安全可靠运行是保证电厂实现安全、高效不可缺少的环节。输煤系统的工艺流程随锅炉容量、燃料品种、运输方式的不同而差别较大,并且使用设备多,分布范围广。作为一种具有本安性且远距离传输能力强的分布式智能总线网络,lonworks总线能将监测点做到彻底的分散(在一个网络内可带32000多个节点),提高了系统的可靠性,可以满足输煤系统监控的要求。火电厂输煤系统一般都采用顺序控制和报警方式,为相对独立的控制单元系统,系统配备了各种性能可靠的测量变送器。通过运用Lonworks现场总线技术将各种测量变送器的输出信号接入对应的智能节点组成多个检测单元,然后挂接在Lonworks总线上,再通过Lonworks总线与已有的DCS系统集成,实现了对输煤系统更加有效便捷的监控。 在输煤系统中,常用的测量变送器一般有以下几种: (1)开关量皮带速度变送器(2)皮带跑偏开关(3)煤流开关(4)皮带张力开关(5)煤量信号(6)金属探测器(7)皮带划破探测(8)落煤管堵煤开关(9)煤仓煤位开关。 每一种测量变送器和其相对应节点共同组成智能监测单元,对需要监测的工况参数进行实时的监控。监测单元通过收发器接入Lonworks总线网络进行通信,可根据监测到的参数进行控制和发出报警信号,系统的结构如图1所示。 3、 Lonworks总线智能节点的一般设计 智能节点是总线网络中分布在现场级的基本单元,其设计开发分为两种:一种是基于neuron芯片的设计,即节点中不再包含其它处理器,所有工作均由neuron芯片完成。另一种是基于主机的节点设计,即neuron芯片只完成通信的工作,用户应用程序由其它处理器完成。前者适合设计相对简单的场合,后者适应于设计相对复杂的场合。一般情况下,多采用基于芯片的设计。由于智能节点不外乎输入/输出模拟量和输入/输出开关量四种形式,节点的设计也大同小异,对此本文只给出了节点设计的一般方法。 基于芯片的智能节点的硬件结构包括控制电路、通信电路和其它附加电路组成,其基本结构如图2所示。 图2 智能节点基本结构图 Fig 2 Basic Structure Of Node Based On The Neuron Chip 控制电路 ①神经元芯片:采用Toshiba公司生产的3150芯片,主要用于提供对节点的控制,实施与Lon网的通信,支持对现场信息的输入输出等应用服务。 ②片外存储器:采用Atmel公司生产的AT29C256(Flash存储器)。AT29C256共有32KB的地址空间,其中低16KB空间用来存放神经元芯片的固件(包括LonTalk协议等)。高16KB空间作为节点应用程序的存储区。采用ISSI公司生产的IS61C256作为神经元芯片的外部RAM。 ③I/O接口:是neuron芯片上可编程的11个I/O引脚,可直接与外部接口电路连接,其功能和应用由编程方式决定。 通信电路 通信电路的核心收发器是智能节点与Lon网之间的接口。目前,Echelon公司和其他开发商均提供了用于多种通信介质的收发器模块。通常采用Echelon公司生产的适用于双绞线传输介质的FTT-10A收发器模块。 附加电路 附加电路主要包括晶振电路、复位电路和Service电路等。 ①晶振电路:为3150神经元芯片提供工作时钟。 ②复位电路:用于在智能节点上电时产生复位操作。另外,节点还将一个低压中断设备与3150的Reset引脚相连,构成对神经元芯片的低压保护设计,提高节点的可靠性稳定性。 ③Service电路:专为下载应用程序设计。Service指示灯对诊断神经元芯片固件状态有指示作用 节点的软件设计采用Neuron C编程语言设计。Neuron C是为neuron芯片设计的编程语言,可直接支持neuron芯片的固化,并定义了34种I/O对象类型。节点开发的软件设计分为以下几步: (1)定义I/O对象:定义何种I/O对象与硬件设计有关。在定义I/O对象时,还可设置I/O对象的工作参数及对I/O对象进行初始化。 (2)定义定时器对象:在一个应用程序中最多可以定义15个定时器对象(包括秒定时器和毫秒定时器),主要用于周期性执行某种操作情况,或引进必要的延时情况。 (3)定义网络变量和显示报警:既可以采用网络变量又可以采用显示报警形式传输信息,一般情况采用网络变量形式。 (4)定义任务:任务是neuron C实现事件驱动的途径,是对事件的反应,即当某事件发生时,应用程序应执行何种操作。 (5)定义用户自定义的其它函数 :可以在neuron C程序中编写自定义的函数,以完成一些经常性功能,也将一些常用的函数放到头文件中,以供程序调用。 4、基于Lonworks总线的火电厂输煤系统与DCS的网络集成 现场总线技术与传统的系统DCS系统实现网络集成并协同工作的情况目前在火电厂中尚为数不多。进一步推动火电厂数字化和信息化的发展,逐步推行现场总线技术与DCS系统的集成是火电厂工业控制及自动化水平发展的趋势。就目前来讲,现场总线技术与DCS集成方式有多种,且组态灵活。根据现场的实际情况,我们知道不少大型火电厂都已装有DCS系统并稳定运行,而现场总线很少或首次引入系统,因此可采用将现场总线层与DCS系统I/O层连接的集成,该方案结构简便易行,其原理如图3所示。从图中可以看出现场总线层通过一个接口卡挂在DCS的I/O层上,将现场总线系统中的数据信息映射成与DCS的I/O总线上的数据信息,使得在DCS控制器所看到的从现场总线开来的信息如同来自一个传统的DCS设备卡一样。这样便实现了在I/O总线上的现场总线技术集成。火电厂输煤系统无论是在规模上,还是在利用已有生产资源的基础上,采用该方案都是可行的,同时也体现了把火电厂某些相对独立控制系统通过现场总线技术纳入DCS系统的合理性。由此可见,现阶段现场总线与系统的并存不仅会给生产用户带来大量收益,而且使用户拥有更多的选择,以实现更合理的监测与控制。 参考文献: 大跨度输煤栈桥结构设计探讨 火电厂输煤控制系统的开发 发电厂输煤计量集控的理论与实践 参考资料:另外,虚机团上产品团购,超级便宜本回答由提问者推荐随便抓个就能写一个大课题,别管什么都有可操性,看看你对哪方面感兴趣,或者你也可以征求你指导老师的意见,甚至可以用抓阄的方式决定,呵呵。如果有条件的话最好实地能去电厂看看,这样写起来就有材料了。另外,团IDC网上有许多产品团购,便宜有口碑

3、论文(汽轮机)

1. 汽轮机旁路系统设计 彭领新 文献来自: 电力建设 2000年 第07期 CAJ下载 PDF下载 不同型式的汽轮机 ,其旁路系统的容量和功能应不尽相同 ,故本文着重论述不同启动方式的汽轮机如何确定其旁路系统的容量和功能 ,以使价格较昂贵的旁路系统能充分发挥作用。1 汽机旁路系统的功能1 ... 被引用次数: 6 文献引用-相似文献-同类文献 2. 汽轮机转子合成应力公式 安江英,卞双,周兰欣,张保衡 文献来自: 华北电力大学学报 1998年 第02期 CAJ下载 PDF下载 关键词汽轮机转子应力热应力集中系数中图分类号TK262引言汽轮机转子的工作条件及受力情况相当复杂,转子上除了热应力外,还存在各种机械应力。由于在高温高压工质中高速旋转,转子承受由于叶片和叶轮及转子自重产生的离心应力, ... 被引用次数: 7 文献引用-相似文献-同类文献 3. 汽轮机叶片叶型测量综述 陈非凡,强锡富 文献来自: 航空计测技术 1995年 第03期 CAJ下载 PDF下载 叶片的加工量约占整个汽轮机1/3,在整个汽轮机事故中,由于叶片的质量所引起的故障也占1/3[’:。所以,叶片的质量是整台汽轮机质量的保证。叶片的形状误差对二次流损耗有较大的影响。所以直接影响着汽轮机的能量转换效率。这正是叶片型线的 ... 被引用次数: 6 文献引用-相似文献-同类文献 4. 核电站汽轮机数学模型 于达仁,阎志刚,楼安平,汪洪滨 文献来自: 核动力工程 1999年 第01期 CAJ下载 PDF下载 在饱和蒸汽汽轮机中,工质的湿度比较大,而且在逐级膨胀做功过程中,湿度进一步增大。所以在汽轮机的通流部分表面与腔室、汽水分离再热器和回热抽气管道中均覆盖着厚约几十微米的水膜,在个别处,水膜的厚度可达几百微米。水膜中所包含的 ... 被引用次数: 4 文献引用-相似文献-同类文献 5. 600MW汽轮机转子疲劳寿命计算 武新华,荆建平,夏松波,刘占生,张欣,符东明 文献来自: 汽轮机技术 1999年 第03期 CAJ下载 PDF下载 0前言汽轮机转子的寿命预测和寿命管理不仅对调峰机组有巨大意义,对承担基本负荷、中间负荷的机组也有实用价值,因为这些机组同样有如何经济合理地运行和有计划地消耗转子寿命,确?... 2疲劳寿命分析600MW汽轮机转子材料为30Cr1MoV,本文的疲劳寿命计算采用低周疲劳寿命曲线Δεt=0.0031025(2Nf)-0 ... 被引用次数: 11 文献引用-相似文献-同类文献 6. 汽轮机转子热应力自适应模型研究 黄仙,杨昆,张保衡 文献来自: 中国电机工程学报 1998年 第01期 CAJ下载 PDF下载 关键词汽轮机转子热应力在线监控1引言目前国内外对于汽轮机转子热应力的在线监控,均离不开相应的数学模型。然而,影响转子热应力的因素有很多,除了蒸汽温升率以外还有蒸汽对转子体的放热系数、转子材料的导热率、导温系数、弹性模 ... 被引用次数: 8 文献引用-相似文献-同类文献 7. 汽轮机旁路系统的设计与运行 杨冬,陈听宽,侯书海,毕勤成,杨仲明,李永兴 文献来自: 中国电力 1998年 第07期 CAJ下载 PDF下载 汽轮机旁路系统允许锅炉与汽轮机独立运行,缩短了启动时间,并且保证锅炉所有受热面包括再热器在启动过程或汽轮机甩负荷时得到充分冷却。具备安全阀功能的100%容量高压旁路系统与容量为60%~70%的低压旁路系统配合, ... 被引用次数: 5 文献引用-相似文献-同类文献 8. 电站汽轮机叶片疲劳断裂失效综述 王江洪,齐琰,苏辉,李劲松 文献来自: 汽轮机技术 1999年 第06期 CAJ下载 PDF下载 0前言由于汽轮机叶片疲劳断裂而引起的电站事故比较常见,约占整个火力电厂运行事故的三分之一。每台汽轮机都拥有许多叶片,只要一只叶片断裂就可能导致整个机组的严重事故,造成重大经济损失,甚至是人员伤亡。因此,分析叶片的疲劳断裂 ... 被引用次数: 6 文献引用-相似文献-同类文献 9. 大型汽轮机的模块化仿真建模 苏明,翁史烈 文献来自: 系统仿真学报 1998年 第03期 CAJ下载 PDF下载 大型汽轮机的模块化仿真建模上海交通大学,上海200030苏明翁史烈摘要根据对汽轮机这类热力系统部件特点和工质流动网络特征的分析,在EASY5仿真支撑环境下,建立了大型汽轮机系统的模块化仿真模型。实践表明所采用的系统 ... 被引用次数: 8 文献引用-相似文献-同类文献

4、电厂热能动力工程毕业论文怎么写?

  热能动力工程可以写电厂热能技术,锅炉余热利用等等。开始也不会,还是上届师兄给的文方网,写的《孤网方式下汽轮机系统建模仿真及稳定控制研究》,很专业超临界汽轮机及其调速系统建模及其参数辨识塔式太阳能吸热器的热工数值模拟大型异重循环流化床垃圾焚烧电厂监控系统的开发与研究大型循环流化床垃圾焚烧电厂热工监控系统的研制及产品化冷却塔中沟槽填料上冷却液膜的流动和传热特性研究太阳能热动力系统储热复合材料的制备与试验研究太阳能定压加热发电系统的研究电厂热工控制系统备件消耗预测研究大型汽轮机组全工况运行热经济性在线分析燃煤发电厂褐煤干燥系统的集成分析电厂热烟气干化污泥过程中SO_2吸收的研究先进控制方法在电厂热工过程控制中的研究与应用基于热泵技术的MEA法CO_2捕集系统模拟分析滑动弧放电等离子体处理挥发性有机化合物基础研究川东北地区天然气资源特征与可持续发展研究CaO吸附CO_2能耗特性及热集成研究火电厂热工设备效能评价方法与系统锅炉汽温对象逆动力学模型及其应用多变量预测控制器在200MW火电机组主汽温控制系统中的应用研究新型Cu/SAPO-34分子筛催化剂NH_3-SCR低温反应活性位研究及其水热稳定性能探讨电厂热力系统图形模块化动态建模基于Bi2Te3热电材料的低温废热回收利用研究Cu-Ce改性USY分子筛的低温NH_3-SCR性能的研究沧东电厂电水热联产生产运行方式分析与评价AP1000电厂状态参数不确定性对LBLOCA影响的量化分析火电企业技改项目投资效益后评价及应用神华集团节能环保对标体系建设研究新颖外燃式燃气轮机循环与特性研究AP1000先进核电厂大破口RELAP5建模及特性分析应用吸收式热泵提高热电厂经济效能研究可以写锅炉或者汽机的经济分析或者安全管理等方面内容!几个字就可以了。可以取消热能装置。用磁动力输出动力驱动。

5、跪求电场实习论文,这也是我的毕业论文,我是热自专业的。

为保密和安全起见,在文中我不注明是什么电厂,希望对你有所帮助1 主要设备概况1.1 锅炉制造商:制造商:东方锅炉厂。型式和特点:锅炉为亚临界、一次中间再热、单炉膛、复合循环塔式蒸汽锅炉,其特点是在蒸发器区段设有强制循环泵和小型汽水分离器。锅炉本体全部采用钢结构支撑、全悬吊结构、紧身封闭布置方式。锅炉采用平衡通风、扰流式低NOx燃烧器前后墙对冲燃烧方式、固态排渣。锅炉最大连续出力为1650 t/h。当燃用设计煤种时,在BMCR工况下,锅炉热效率不小于92%。锅炉水冷壁采用垂直管段全焊接气密式膜式壁结构。锅炉配用三台无填料电动炉水循环泵,两运一备。锅炉点火采用高能电火花→轻油→煤粉方式。过热蒸汽温度采用二级喷水减温调节。再热蒸汽温度调节亦采用喷水减温调节。1.2汽轮发电机组制造商:捷克斯柯达公司皮尔森汽轮机制造厂。型式和特点:汽轮机为亚临界、一次中间再热、单轴、四缸四排汽、双背压、凝汽式汽轮机。高压缸为单流程,中、低压缸为双流程。所有汽缸均为双层缸,以适应快速启动和经常启停的需要。高、中、低压缸叶片全部采用冲动式。主蒸汽经4个高压主汽门和调节汽门进入汽轮机,依次单向流经高压缸的8级冲动式叶片,中压缸具有双向冲动式转子,两侧各8级。两个低压缸均具有双向冲动式转子,每侧各有5级叶片。汽轮机高、中压转子为整体锻造,低压转子为套装式,每个转子位于两个轴承间,用刚性联轴器连接。轴向力由高、中压缸之间的推力轴承承受。末级叶片高度为840mm。高压缸内效率为91.74%,中压缸内效率为93.66%,低压缸内效率为88.28%。汽轮机控制油系统和润滑油系统采用不同的油质,控制油采用高压抗燃油,润滑油采用透平油。汽轮发电机组布置方式为机头朝向锅炉。发电机视在功率588MVA、额定有功功率500MW、最大连续出力525MW、额定电流17.00kA、额定电压20kV,定子线圈水冷却、定子铁芯和转子绕组氢冷。1.3主要工艺系统概况1.3.1主蒸汽系统主蒸汽管道为单元制系统。主蒸汽管道按“4-2-1-2-4”制配制,即主蒸汽管道自锅炉过热器出口及汽机自动主汽门入口有四个接口,为保证汽机各条进汽管道之间汽温温差不超过规定的允许值,将锅炉出口的4根DN300的管道分别合并为2根DN400的管道,然后再合并为1根DN500的管道。进入汽机房后又分为2根DN400的管道,进汽机前又分为4根DN300的管道分别接入汽轮机的4个高压主汽门。在汽机侧的DN400的管道上各连接1根去高压旁路站Φ273×25的管道。1.3.2再热蒸汽系统冷、热再热蒸汽管道为单元制系统。再热热段蒸汽管道与主蒸汽系统类似,管道采用“4-2-1-2-4”制配制,在进汽机两侧的中压联合汽门前配有三通滤网。4根DN500的管道分别合并为2根DN700的管道,然后再合并为1根DN850的管道。进入汽机房后又分为2根DN700的管道,进汽机前又分为4根DN500的管道分别接入汽轮机的4个中压主汽门。在汽机侧的2根DN700的管道上各连接1根去低压旁路站Φ720×17.5的管道。再热蒸汽冷段道采用“4-2-4”制配制。从汽轮机高压缸排汽4根ΦDN500的管道分别合并为2根DN700的管道。在锅炉侧又分为4根ΦDN500的管道分别接入锅炉再热器的4个接口。在DN600的管道上接管,供汽给2号高压加热器、给水泵汽轮机、汽机高压轴封、除氧器和厂用蒸汽母管。1.3.3主给水系统高压给水系统配置一台100%容量的汽动给水泵及一台50%容量电动调速给水泵。汽动给水泵作为正常运行;电动给水泵作为启动用。电动泵不需要暖泵就能从备用状态直接投入运行。主给水管道材料采用WB36,管子规格分别为DN400和DN300。主给水通过两台高压加热器加热直接进入锅炉。1、2号高加配有给水大旁路和液动式旁路阀。1号高加串联了外置式蒸汽冷却器。在最后一级高压加热器后,设有逆止阀和电动闸阀。在锅炉进口给水管上设有调节阀以调节给水压力使减温水满足过热器减温的压力要求。凝结水经两台卧式除氧器除氧,而后进入除氧器水箱。正常运行时,除氧器由中压缸抽汽加热;在汽机跳闸或低负荷运行时,除氧器从再热冷段取汽。在启动运行时,除氧器用辅助蒸汽加热,通过除氧器再沸腾管加热给水箱中的给水。过热器减温水及高旁减温水从给水管中引出。再热器减温水从给水泵中间级引出。1.3.4凝结水系统凝结水精处理装置采用低压系统,故凝结水系统采用二级凝结水泵。凝结水经一级凝结水泵后分成两路,一路去凝结水精处理装置,另一路去发电机冷却系统。正常运行时,三台50%容量的凝结水泵二台运行,将热井中的凝结水经轴封加热器、凝结水调节站、四台低压加热器,打入除氧器。轴封加热器配有两台电动隔离阀和一个100%电动隔离阀旁路。四台低压加热器配有电动隔离阀和一只电动旁路阀(100%容量)。凝结水补水由厂外锅炉补给水处理车间(中方设计)提供。在除氧器高水位时,可开启二级凝结水泵出口的凝结水再循环管,使多余的水返回凝汽器。热井设有低水位补充除盐水和高水位信号。启动时,凝汽器由除盐水注水,凝结水泵向除氧器注水,锅炉由给水泵注水。在二级凝结水泵出口的凝结水总管上,接出一根杂用供水母管,分别供给低压缸喷水、汽机低压旁路减温等。除氧器配有溢流管和紧急事故放水管接至汽机本体扩容器。1.3.5回热抽汽系统汽机共有七级回热抽汽,作为二台高压加热器、除氧器和四台低压加热器的加热汽源。二台高加和除氧器的抽汽管道上均装有一只电动闸阀(靠近高加),一只气动快关抽汽逆止阀(靠近汽机本体)。为提高热经济性,1号高压加热器设置了外置蒸汽冷却器。四台低压加热器的抽汽管道上均装有一只电动闸阀(靠近低加)和一只气动快关抽汽逆止阀(靠近汽机本体),以防止机组甩负荷时,抽汽压力突降、加热器中的饱和水迅速汽化产生大量蒸汽倒流入抽汽管道内,使汽机进冷汽和超速。1.3.6 冷却水系统冷却水系统主要分为三个部分:开式循环水冷却系统、开式脱碳水冷却系统和闭式冷却水系统。开式循环水冷却系统的水源来自于水塔来的循环水,主要用于冷却流量较大的冷却设备。主要有:主凝汽器、给水泵汽轮机凝汽器、发电机夏季冷却器、电动泵液压联轴器冷却器、汽轮机主冷油器和大、小机射水池补水等。开式脱碳水冷却系统的水源来自于生水石灰预处理站(脱碳站)出来的脱碳水。脱碳水本应直接补向水塔,但由于该水水温较低,在进水塔之前以两根Φ630×8管道先进主厂房冷却一些设备,冷却水回水至开式循环水回水管道,再一起排至水塔。脱碳水冷却的设备主要有:内部冷却水冷却器、发电机夏季冷却器(循环水温高时,短时运行)、电动泵电机冷却器、磨煤机冷却器和空调机冷却器等。闭式冷却水系统冷却介质为一级除盐水,它主要用于汽机房各种泵类的轴承冷却水。如凝结水泵、汽动给水泵、电动给水泵、低加疏水泵、锅炉循环泵以及空气预热器轴承冷却器、汽水取样冷却器和炉膛火焰监测冷却器等。作为冷却介质的一级除盐水,经2×50%容量的工业水泵进入工业水冷却器,由脱碳水冷却后送入各设备和机械进行冷却。为了确保断电时锅炉循环水泵和火焰监测(摄像头)冷却器的冷却水源,系统设有一台直流工业水泵,在全厂停电时,保证向以上设备提供冷却水。1.3.7制粉系统制粉系统采用中速磨煤机、正压直吹式冷一次风机系统。每台锅炉配6台MPS225型磨煤机,其中五台运行,一台备用。每台磨煤机引出四根煤粉管道连接到位于锅炉一侧的、同一标高的四个煤粉燃烧器中,锅炉前后墙各有三层燃烧器,每层有四个喷嘴,根据锅炉负荷的变化可以停用任何一台磨煤机和对应的燃烧器。1.3.8锅炉烟风系统烟风系统采用平衡通风方式,送风机和一次风机串联设置,在送风机入口风道上设有暖风器。二次风经暖风器、送风机、空预器后进入锅炉,二次风分三股,分调节二次风、非调节二次风和燃油二次风,调节二次风用于煤种变化的适应性调节。一次风在进空预器前分为两路,一路经空预器加热作为磨煤机干燥用热风;另一路不经空预器,作为磨煤机调温风,以调节磨煤机出口介质温度。密封风机吸室内风作为磨煤机的密封风。自己整好了啊,现在都毕业了!汗!!本回答被提问者采纳那个学校的,我就是这个专业的,毕业了,我当年的论文也不知那里去了,不然直接给你,给个邮箱吧,我发资料给你

6、跪求汽轮机毕业论文(函授的)

给你一个完整的论文可以,不过我还是希望你能自己作出了,这样对你今后的工作会有莫大的帮助,现在给你一点点的提示,算是个纲要吧,希望能对你有一点的帮助.一、概述 主要介绍一下与汽机有关的方面,比如汽轮机的作用、原理、以及种类和发展历程。(很多教材开篇就是讲的这种常识,可以控制在350到500字)之内。二、详情 可针对目前较为常用的几个机型做文章,目前常用的都有纯凝机(单纯发电)、背压机(可以热电同联产,但有局限性)和抽凝机(理想的热电联产专用机型。这部分尽量说的要详细一点,目前关于这方面的资料应有尽有。(该部分可以写个800字作用是没有任何问题的)三、系统连接情况 可针对上述几个机型,对其所需的系统做一个简单的介绍,最好图文并茂,如果你有基础的话写个200字应该是件很简单的事,要是没有基础的话就参阅一下相关的资料,做一个简单的介绍。一般就这几个系统:汽水系统、油系统、真空系统(背压机没有该系统)等四、展望一下未来以及说一些自己的观点。 可以站在新能源以及环保的角度讲一下嘛,很简单的,100字应该可以张口就来。五、结尾收工 这就是最简单的了,呵呵。 希望我的提示能够带给你帮助,两三个小时搞定问题应该也不是什么太难的事吧?呵呵

7、热动本科要毕业了,需要写论文,帮我想个汽轮机方面的论文

介绍Q号是1-9-9-6-2-0-7-8的人给你是个帮写高手,写的论文质量高,服务态度一流,价格也很公道哦你的论文具体有什么要求,比如字数和内容

8、电厂汽轮机的参考文献有哪些??

1.《汽轮机运行技术问答》华东电业管理局 编 32开本2.《汽轮机设备运行》火力发电职业技能培训教材 32开本3.《汽轮机运行》 辽宁省电力工业局 编 16开本 4.《汽轮机运行题库》职业技能鉴定参考书 32开本5.《600MW火力发电培训教材》一套5册(锅炉 汽机 电气 热工 化学)第一二四本你可以去电力学院买,那几本可以去新华书店买,就知道这些。本回答由网友推荐《600MW火力发电培训教材》一套5册(锅炉 汽机 电气 热工 化学)

9、300MW汽轮机运行特性分析毕业论文!!

一、项目提出的背景1.1 汽轮机'>300MW汽轮机电液控制系统 洛阳首阳山电厂二期2x汽轮机'>300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调节系统为数字电液调节(D—EHG),采用低压汽轮机油电液调节。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀控制,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。控制油和润滑油均采用同一油源即主油箱内的N32号防锈汽轮机油,在控制油路上安装一精密滤网(精度为51μm)。1.2 存在问题 首阳LU电厂3、4号机组从1995年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象, 检查均为伺服阀故障。 伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀原因造成的停机:2000年分别为8次、5次,2001年分别为1次、2次;截止到2002年6月仅3号机组由于伺服阀原因造成的停机就达4次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第2级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。1.3 油质状况及防止伺服阀卡涩的措施 由于3、4号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。 日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的汽轮机'>300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每6个月1次。2001年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。 伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施: (1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。 从运行看,因伺服阀卡涩引起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV阀的方案。二、Abex415型电液伺服阀2.1 工作原理 电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。 其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。2.2 主要特点 (1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染能力差。 2.3 主要技术规范 伺服阀的型号、。 三、DDV伺服阀技术介绍3.1 工作原理 DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。 永磁直线马达结构。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。3.2 主要特点 DDV阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。 DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。3.3 主要技术参数 DDV伺服阀的型号、参数 四、技术改造方案及设备安装调试 通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有高的可靠性、安全性;(4)改造量小。 改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。(2)机械方面:因2种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG控制信号(±8mA)和2路220V交流电源(一路UPS,一路保安段),将控制信号(±8mA)变为电压信号(±10V)作为DDV的控制信号,交流220V转换为直流24V作为DDV的电源。 通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为DDV阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据 为检验伺服阀改为DDV阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。五、运行实践及经济分析 4号机组自2001年9月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。 技术改造后对机组安全、经济方面的影响。安全性:避免了伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用74万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。六、结 论 实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液控制系统推广、实施。 目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。 虽然DDV阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验DDV阀的甩负荷特性。

10、汽轮机找中心论文

职称论文电大物流毕业论文工商管理毕业论文 企业管理毕业论文政治毕业论文土木工程毕业论文交通物流毕业论文医学毕业论文建筑学毕业论文公共管理毕业论文经济管理毕业论文金融毕业论文自动化毕业论文法学毕业论文行政管理毕业论文财务管理毕业论文公共管理毕业论电子商务毕业论文国际经济与贸易毕业论文药学毕业论文护理学毕业论文财税毕业论文 汽车技师论文 代笔



汽轮机 系统 机组 管道 汽机 锅炉 转子

上一篇:大学生毕业论文字数上限与大学生毕业论文开题报告字数
下一篇:毕业论文里面的研究方法与毕业论文所用的研究方法