欢迎来到华夏图书馆!包月下载,不限IP,随心所欲! 【加入收藏】
| 本站已稳定运行4034天

瓦斯论文参考文献与硕士论文作为参考文献怎么写

点击进入免费下载2022年中国知网论文


1、预防煤矿瓦斯灾害新技术的研究

胡千庭

(煤炭科学研究总院重庆分院 重庆 400037)

摘要 预防煤矿瓦斯灾害是世界各采煤国家关注的焦点,论文简要介绍了包括瓦斯灾害易发区域的预测技术、高效瓦斯抽采及抽采效果评价技术、瓦斯灾害监测预警技术等区域性的以建立本质安全矿井为目的的综合技术的应用、研究现状及进展情况。

关键词 煤矿瓦斯灾害 预测技术 抽采技术 监测预警技术

Research on New Prevention Technology for Disaster of Coal Gas

Hu Qianting

(Chongqing Branch of Research Institute of Coal Science,Chongqing 400037)

Abstract:It is a universal focus of the world“s coal mining countries to prevent disaster of coal gas.This article briefly introduced the study status,progress and applications of several comprehensive technologies including forecast technology for regions prone to gas disaster,assessment technology for effective extraction of gas and extraction effects,technology of monitoring and early-warning for gas disaster,aiming to construction of essential safe coalmines.

Keywords:disaster of coal gas;forecast technology;extraction technique;monitoring and early-warning technologies

预防煤矿瓦斯灾害是世界各采煤国家关注的焦点,尤其在我国,瓦斯灾害已成为煤矿群死群伤的头号杀手。2005年,一次死亡10入以上的特大煤矿事故中,瓦斯事故占70.7%,新中国成立以来发生22起一次死亡100入以上的煤矿事故中,瓦斯煤尘爆炸事故为20起。

预防煤矿瓦斯灾害技术的研究已经从局部性短兵相接的单项技术向区域性的以建立本质安全矿井为目的的综合技术发展,包括瓦斯灾害易发区域的预测技术、高效瓦斯抽采及抽采效果评价技术、瓦斯灾害监测预警技术等。本文对这些技术的研究作一简要介绍。

1 瓦斯灾害易发区域预测技术

瓦斯灾害与地质构造有密切关系,地质构造复杂的区域通常属于瓦斯灾害易发区域。此外,瓦斯灾害易发区通常赋存着较高的瓦斯含量,因此,预测高瓦斯含量区域也是预测瓦斯灾害易发区的有效手段。

1.1 地质雷达超前探测地质构造技术

地质雷达是一种确定地下介质分布的定向高频电磁波反射定位技术。在岩土工程和建筑工程等领域得到广泛应用。煤炭科学研究总院重庆分院通过多年努力,最新研制出适合煤矿环境使用的本质安全型地质雷达,能够超前探测采掘工作面20~30m深处煤岩内的隐伏小型构造等地质异常体,通过在西山、淮南、松藻等矿区的试验,取得了好的效果。2004年12月12日,在西山杜儿坪矿68214尾巷进行了煤层陷落柱探测试验,发现在煤层中由浅到深雷达波逐渐衰减,而在有陷落柱的地方雷达回波出现强反射,同相轴基本形成一段弧形曲线,明显反映了陷落柱和煤层的分界面和陷落柱的大小范围(见图1)。

图1 杜尔平陷落柱探测结果

在西曲矿22502 工作面副巷探测2~4煤层位置和厚度:探测结果(图2)表明,2煤层的底板和4煤层的顶、底板位置反映均较清楚,4煤层在所测范围内基本稳定,受断层影响局部有起伏,所测4煤层平均厚度为3.35m。

图2 西曲矿煤层厚度探测结果

在西曲矿28210工作面副巷磺头超前探测采空区边界:沿磺头表面向前方作水平扫描,参见图3,可见约在前方30m处有一强反射界面,推测为含水异常区。

图3 西曲矿采空区边界探测结果

1.2 P-S 波长距离构造探测技术

P-S波长距离超前构造探测技术主要检测地震波中反射回来的P 波和S波,用来分析预报地质构造,能方便快捷预报采掘工作面100~150m深处煤岩内的地质异常情况。

试验分别于2005年7月9~10日和9月21日在潞安常村矿S3-5 皮顺巷、王庄矿740回风巷和王庄矿630皮带巷进行了三次探测试验。

图4 常村矿陷落柱探测结果

常村矿S3-5皮顺巷探测(图4)结果为:大约55.8~87.5m处反射面较多,岩体破碎,可能为陷落柱影响区。该巷掘至距S3回风下山南帮55m处揭露一陷落柱。

王庄矿740回风巷探测(图5)结果为:在掘进面前方13.5m、掘进面前方56.5m处都存在反射界面,在70~120m 范围内还存在一些次生的反射界面。实际揭露发现掘进头前55m处发育F237断层,断层性质为正断层,走向132°,倾向222°,倾角80°,断层落差4.6m。

图5 王庄矿断层探测结果

1.3 煤层瓦斯含量直接测定技术

瓦斯含量Q是指单位质量的煤在20℃和一个大气压条件下所含有的瓦斯量,它由可解吸瓦斯含量和残存瓦斯含量组成,单位为m3/t,其表达基准为原煤基。可解吸瓦斯含量Qm的值等于瓦斯损失量 Q1、煤样瓦斯解吸量 Q2、煤样粉碎后的瓦斯解吸量 Q3三者之和。

通过向煤层施工取心钻孔,将煤心从煤层深部取出,及时放入煤样筒中密封,记录取心器切割煤心到密封前的时间;然后在井下测量煤样筒中煤心的瓦斯解吸速度及解吸量,根据解吸速度和损失时间推算瓦斯损失量Q1;把煤样筒带到实验室然后测量从煤样筒中释放出的瓦斯量,与井下测量的瓦斯解吸量一起计算煤心瓦斯解吸量Q2;将煤样筒中的煤样装入密封的粉碎系统加以粉碎,测量在粉碎过程及粉碎后一段时间所解吸出的瓦斯量(常压下),并以此计算粉碎瓦斯解吸量Q3;瓦斯损失量、煤心瓦斯解吸量和粉碎瓦斯解吸量之和就是可解吸瓦斯含量,即 Qm=Q1+Q2+Q3。然后测定煤样质量,并测定煤层残余瓦斯含量,最终求出煤层瓦斯含量。

测试系统由煤样筒、容量法测量系统、气体成分测定系统、煤样粉碎系统和钻孔取样系统等组成,见图6。利用这种方法在淮南矿业集团进行试验,并与钻屑法测定可解吸瓦斯含量进行对比,试验结果见表1。由表1 可知,取心法测定的可解吸瓦斯量精度更高。同时与巷道掘进过程中的瓦斯涌出量进行对比(见图7),显然趋势基本一致。

图6 瓦斯含量直接法测定系统

利用这种方法能够实现大面积大量测定煤层瓦斯含量资料,了解各区域的煤层瓦斯含量分布状态,以此为基础便可有效预测瓦斯灾害易发区。目前试验取样钻孔深度达到50m,随着进一步改进和扩大试验,预计能够满足煤矿生产的实际需要。

图7 瓦斯含量测定结果对比

表1 钻屑法测定与取心法测定瓦斯解吸量试验结果对比

2 高效瓦斯抽采技术

2.1 地面钻孔抽采采动卸压区煤层或采空区瓦斯

瓦斯抽采是预防瓦斯灾害最根本的手段,借鉴国内外一些成功的经验,结合淮南矿区的实际情况,我们对煤矿区地面钻井抽采采动卸压区煤层或采空区瓦斯技术进行了试验研究。

图8是地面钻井抽采采动卸压区煤层或采空区瓦斯的钻孔结构图,抽采采动卸压煤层内的瓦斯时,钻孔应进入卸压煤层内。在淮南矿业集团谢桥和张北矿采空区瓦斯抽采的试验结果表明,钻孔应布置在距离回风巷30m 以内,钻孔间距在200~300m之间。图9是谢桥矿抽采效果图,表2总结了淮南矿区地面钻孔抽采采空区瓦斯的流量和浓度。潘一矿的地面钻孔抽放采空区瓦斯流量为5~15m3/min,浓度为60%~85%。张北矿地面钻孔抽放采空区瓦斯流量为10~25m3/min,浓度为60%~80%。谢桥矿地面钻孔抽放采空区瓦斯流量为10~20m3/min,浓度为60%~90%。谢一矿的一个地面钻孔抽放采空区瓦斯量为4~5m3/min,浓度为50%。

表2 淮南矿区地面钻孔抽放瓦斯流量和浓度

图8 地面钻孔抽采采空区瓦斯钻孔结构图

图9 谢桥矿地面钻孔抽采采空区瓦斯效果

通过以上对淮南矿区地面钻孔抽放采空区瓦斯实施效果的归纳,可以看出:通常情况下,这些钻孔在正常工作期间,瓦斯抽放量和瓦斯浓度均较高,平均流量为15m3/min,平均瓦斯浓度为80%,抽放效果较好。当工作面推过钻孔40~100m时,钻孔瓦斯流量和浓度都增到最大值(见图10)。

图10 潘一矿地面钻孔抽放采空区瓦斯流量和浓度

2.2 井下顺煤层枝状长钻孔预抽煤层瓦斯技术

在山西大宁矿,引进澳大利亚生产的VLD-1000定向千米钻机,采用导向和纠偏装置调整钻进方向,并根据煤层强度确定排渣方式和参数。VLD定向钻机从2003年4月开始在大宁矿调试、运行,到2004年4月末的一个整年,总共钻进进尺为78484m,创下了单台VLD定向钻机在井下定向钻进的世界纪录。到2004年9月底,VLD钻机已经完成了定向钻孔160个,总进尺达到了112716m,最长的钻孔达到了1005m,有20个钻孔的长度在800m以上,钻孔布置如图11所示。

图11 大宁矿顺煤层枝状长钻孔

对不同深度钻孔的抽采效果进行了现场试验和考察,将钻孔按深度分为 800m、600m、400m组。不同深度千米钻机枝状长钻孔抽采效果如表3所示。由此可以看出,钻孔深度为800m组的钻孔总钻进长度是钻孔深度400m组的153%,其抽采第1年、第2年及800 d的总累计抽采量是钻孔深度400m组的133%~139%;钻孔深度为600m组的钻孔总钻进长度是钻孔深度400m组的145%,其抽采第1年、第2年及800 d的总累计抽采量是钻孔深度400m组的106%~121%。随着钻孔深度的增加,钻孔的累计抽采总量也相应增加,说明增加钻孔长度对提高抽采效果是可行的。在煤矿井下实施千米钻孔后,既可大幅度减少抽采巷道工程量,并能实现大面积预抽。

钻孔在第2年末的总累计抽采量与第1年末相比增加了14%~28%,而在800 d时的总累计抽采量与第2年末的相比仅增加了1%左右。由此可得出,钻孔的合理抽采时间以1~2年为宜。

大宁矿首采面长500m、宽320m,于2003年开始实施千米钻机枝状长钻孔,钻孔间距15m左右(共计 12个孔、34个水平分支),钻孔深度为 500m左右,钻进总进尺11000m,抽采时间为2.0年。经考察单孔平均总抽采量为1.0mm3。首采面的煤层气含量为14m3/min,由此计算首采面的预抽率为 51.44%;2005年矿井煤层气涌出量为184.8m3/min,其中抽采量为130m3/min,矿井煤层气抽采率为70.35%。

表3 不同深度千米钻机枝状长钻孔抽采效果分析表

3 瓦斯灾害监测技术

瓦斯灾害监测是及时发现瓦斯灾害隐患的关键手段,主要包括传感器技术和监控网络系统两部分。

3.1 红外瓦斯传感器技术

红外瓦斯传感器主要是利用瓦斯气体对某一特定波长红外光吸收性能与瓦斯浓度之间存在一确定关系,通过测定特定波长红外光被吸收的程度反映瓦斯浓度值的原理进行工作,见图12。

图12 红外瓦斯传感元件

对研制的红外传感器进行的测试结果为:瓦斯浓度为0~5%之间时,最大绝对误差为0.06%CH4,最大线性度偏离 0.06%,平均响应时间7.8s,0~40℃温度变化时显示误差为±0.02%CH4,为期10d稳定性试验零点漂移最大为0.01%,在淮北桃园矿试验近7个月未进行调校,误差仍然控制在要求范围之内,显然具有较好的性能。目前已开发出测量范围为0~10%和0~40%CH4的红外瓦斯传感器。

3.2 宽带监控系统

KJ90分布式网络化煤矿综合监控系统主干传输平台即采用了基于I P的工业以太网通信技术,将地面以太网技术直接延伸至煤矿井下环境,为矿井构筑了先进、可靠、标准、高速、宽带、双向的综合信息传输平台,使得矿山安全和综合自动化系统的各种监控设备、自动化过程控制设备、语音通讯设备、图像监控设备等都以IP方式接入。并与煤矿企业的Internet/Intranet整体架构实现无缝连接,如图13。

图13 宽带监控系统功能结构图

4 瓦斯灾害预警技术

瓦斯灾害的有效预防与矿井管理水平密切相关。然而,瓦斯灾害的发生具有许多相关影响因素,且这些因素都是动态变化的,单纯靠入来掌握所有相关因素的变化以及可能导致的结果是非常困难的。为此,我们开展了瓦斯灾害预警技术的研究,通过建立大量的信息数据库,并通过监控系统监测各相关影响因素的变化,利用试验研究得到的相关模型,实现对瓦斯灾害预警,并提出合理的消除瓦斯灾害隐患的建议,利用技术提升矿井安全生产的管理和决策水平。

预警系统基于ARC Infor 三维地理信息系统平台进行开发,使过程和结果具有直观性。目前,瓦斯灾害预警系统主要具备的功能有:①瓦斯赋存分析及预测;②区域煤与瓦斯突出危险性预测;③采掘工作面煤与瓦斯突出危险性预测;④瓦斯浓度变化实时监控与预测;⑤瓦斯爆炸危险性预测;⑥系统管理、矿图维护与输入输出等功能模块。而且随着研究的深入,不断增加功能,自学习修正模型等。图14是该系统软件的一个界面。

4.1 瓦斯地质及瓦斯赋存分析与预测

瓦斯地质及瓦斯赋存分析及预测主要是以绘制瓦斯压力等值线、瓦斯含量等值线、地质构造对煤与瓦斯突出的影响等为目标,研究基于地理信息(GIS)技术的瓦斯地质赋存状况预测方法及软件计算程序。在本系统中,主要研究开发了地质构造的维护、查询,地质单元的划分与智能识别,地质单元的瓦斯压力等值线绘制、瓦斯含量等值线绘制、等值线分布范围查询及分布图查询等功能。

图14 瓦斯压力等值线输出结果

4.2 区域煤与瓦斯突出危险性预测

区域煤与瓦斯突出危险性预测主要以绘制突出危险区域分布图为目标,其预测基础是煤矿实际测定的瓦斯压力和瓦斯含量等基本参数、地质构造、动力现象等。区域预测的方法包括瓦斯地质法、综合指标法、钻孔动力现象判断法和其他现象的综合判断法,区域预测的结果就是各个专业模块计算结果的并集。区域预测结果分为突出威胁区、突出危险区和严重突出危险区三级,结果图可以进行交互查询、打印和共享发布。

4.3 采掘工作面煤与瓦斯突出危险性预测

采掘工作面煤与瓦斯突出危险性预测主要分为采煤工作面突出危险性预测、煤巷掘进工作面突出危险性预测和石门揭煤工作面突出危险性预测三部分内容,其预测数据来源有三个方面,一是钻孔法日常突出预测数据,包括瓦斯解吸指标K1值、钻屑量S、瓦斯涌出初速度q及其衰减指标Cq等;二是工作面瓦斯涌出动态指标,包括放炮后30(60)min内瓦斯涌出变化评价指标V30(V60),监测系统监控的工作面瓦斯实时涌出变化量等;三是地质构造、日常记录的参数测定点、历史采掘状况记录、历史突出事故记录等。

4.4 瓦斯变化实时监控与预测

瓦斯监控信息来源于监测系统,预警服务器的任务是:定时从监控系统服务器读取需要的信息(主要是瓦斯浓度变化实时值),并主动传输到预警服务器上,再根据信息需求进行分类存储和显示,并通过软件界面接口提供灵活的查询和统计分析功能。

由于监控系统数据是进行瓦斯灾害动态预警的基础,所以数据采集服务器程序不但要求其自身具有稳定性、可靠性、灵活性等特征,而且对控件系统服务器不能有任何负面影响。从长远来看,需要对监控系统和预警系统的数据库服务器进行合并以减少数据存储资源的浪费和数据的集中管理。

4.5 瓦斯爆炸危险性预测

瓦斯爆炸危险性预测以矿井监测系统的瓦斯浓度实时监测数据为基础,对其进行分析处理,综合其他影响因素研究出瓦斯爆炸灾害的预警指标和方法,实现对瓦斯爆炸灾害发生的超前预警,其包括两个方面的内容:

(1)对监测系统数据库保存的三类数据进行分析和判断,实现瓦斯爆炸危险性实时预警;

(2)根据煤与瓦斯突出预警结果进行分析和判断,实现异常情况下瓦斯爆炸危险性预警。

4.6 系统管理、矿图维护与输入输出

系统管理、矿图维护与输入输出是本系统正常运行的基础。

(1)系统管理。系统管理包括本软件系统的通用参数设置、显示风格设置、用户权限设置、煤矿部门分配及员工设置、日志管理、系统配置状态诊断、数据库备份与恢复等内容,系统管理功能模块的作用是为预警系统的正常运行提供保障。

(2)矿图维护。矿图维护主要是对矿井的地图对象进行维护,包括设施设备维护、传感器维护、巷道维护、掘进工作面维护、采煤工作面维护、工作面预测测点维护、突出事故点维护、采空区维护、保护带维护、采煤阶段维护、采区维护、瓦斯赋存参数维护、地质构造维护等内容。

矿图维护模块的设计不同于传统的图形绘制方法,为了严格按照预警系统的对象关系进行对象定义,在维护地图对象时,不但要求准确地绘制矿图及其对象,还特别要求同时建立对象之间的拓扑关系及关联方法。

(3)输入输出。输入输出功能是预警系统运行和展示预警结果的主要手段。输入主要通过三种方式进行采集数据,即:日常维护输入、监测系统动态输入和历史数据分析;输出的方式有报表打印输出、报表网络发布、地图打印输出、地图网络发布等方式。

另外,系统还设计研究了灾害防治措施、专家系统知识库等内容。

5 结束语

有效预防瓦斯灾害是一项长期而又艰巨的任务,面临的技术难题将越来越复杂。本文介绍的技术是这些年的一些研究进展情况,部分技术仅在部分矿区进行过试验,达到大面积推广还需要一个过程。尤其是瓦斯灾害的预警技术,目前更主要的是搭建了一个平台。通过“十一五”的科技攻关、国家973、国家自然科学基金等项目的研究,进一步建立和完善预警模型,筛选和完善实用预防技术,并通过现场的试推广应用和自学习不断修正,使之具备涉及瓦斯灾害动态预警所必需的实用软硬件技术,真正为提升煤矿安全水平起到中坚作用。

  • 官方服务
    • 官方网站

2、求一篇瓦斯检查工技师论文,3000字的

摘要《变频器在使用中遇到的问题和故障防范 》由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。外部的电磁感应干扰如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波1, 安装环境变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。咨询记录 · 回答于2021-07-10求一篇瓦斯检查工技师论文,3000字的《变频器在使用中遇到的问题和故障防范 》由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。外部的电磁感应干扰如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波1, 安装环境变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。这个不行,治理瓦斯或者瓦斯抽放亲,您可以参照一下上述3000字,字数太多是发送不过去的,只可给您可以发送此作为参考瓦斯检查人员是煤矿企业中一个特殊的工作岗位,他们的安全作业是保证煤矿生产安全性的重要保障。但是有些瓦斯检查人员并没有认识到自己承担的重要责任,在工作时缺少认真、严谨的精神,应该认真检查的点和面都没有给与足够的重视,往往是一笔带过,甚至做出虚假的检查报告;也有的检查人员检测到瓦斯含量超过规定的标准时,没有如实填写,或者认为只是很少量的瓦斯不会引起事故,因此存在侥幸心理,没有及时上报;有的检测人员在瓦斯检查工作是煤矿企业生产工作中一项重要的内容,从煤矿企业的管理者,到基层的作业人员都必须要统一思想, 加强对瓦斯检查工作的重视,才能保证瓦斯检查工作的有效开展。作为管理者,要从思想. 上重视、战略上支持,消除以往工作中忽略瓦斯检查工作的错误思想,将瓦斯检查与煤矿的安全、生产效益挂钩,将其渗透到日常生产工作中。同时,瓦斯检查人员也应当正确认识自己的岗位职责,坚持严谨、认真的工作态度,充分发挥瓦斯检查:工作的作用,提高煤矿安全生产的效率。首先,要针对瓦斯检查换工作制定相应的管理制度,明确瓦斯检查工作的重要性,并且对其涉及到的工作内容和职责进行明确,将责任落实到具体的岗位新的瓦斯检查工作标准,不断提高瓦斯检查人员的专业素质,增强瓦斯检查人员的工作水平。4.完善瓦斯检查管理制度首先,要针对瓦斯检查换工作制定相应的管理制度,明确瓦斯检查工作的重要性,并且对其涉及到的工作内容和职责进行明确,将责任落实到具体的岗位和人员,增强瓦斯检查工作的条理性;其次,加强煤矿检查工作的现场管理,根据不同的现场环境配备相应的检查人员和管理人员,尤其加强针对瓦斯聚集地的复查。另外,要定期对现场的检查结果进行抽检与核对,确保瓦斯检查结果的准确性与真实性,在核对的过程中发现问题应当及时处理,并且发挥管理制度的.约束作用,提高瓦斯检查工作的效率。综上所述,瓦斯灾害是影响煤矿企业生产安全的重要因素,因此必须要重视煤矿瓦斯的检查工作,并且加强相关工作人员的专业技术和责任意识,通过科学的煤矿瓦斯检查预防瓦斯事故的发生,减少由此而引起的经济损失和人员伤亡,促进煤矿生产工作安全、稳定的发展。

3、求 煤矿瓦斯爆炸事故安全评价 论文,包括事故树分析

  第一节 掘进工作面瓦斯爆炸事故树分析(事故树见下页)  (一) 求最小径集  由于该事故树的“或门”比较多,所以求最小径集比最小割集简单一些,因此我们利用求最小径集的方法来判别系统的危险性,求最小径集的方法与求最小割集的方法是一样的,只是将事故树的“与门”换为“或门”,而将事故树的“或门”换为“与门”之后,按同样的方法进行运算。最小径集的定义表明,一个最小径集中的基本事件都不发生,就可使顶上事件不发生,事故树的最小径集越多,表明系统就越安全。  T=A1A2  =B1B2B3(B4+B5)  =X1X2X3X4X5X6(X7+X8+X9)(X10+X11+X12+X13+X14+ X15+ X16)  = X1X2X3X4X5X6 X7X10 + X1X2X3X4X5X6X7X11+ X1X2X3X4X5X6 X7X12 +X1X2X3X4X5X6X7X13+X1X2X3X4X5X6X7X14+X1X2X3X4X5X6X7X15+  X1X2X3X4X5X6 X7X16 + X1X2X3X4X5X6 X8X10 + X1X2X3X4X5X6 X8X11  + X1X2X3X4X5X6X8X12+X1X2X3X4X5X6 X8X13 + X1X2X3X4X5X6X8X14 + X1X2X3X4X5X6X8X15+ X1X2X3X4X5X6 X8X16+ X1X2X3X4X5X6 X9X10  + X1X2X3X4X5X6X9X11+ X1X2X3X4X5X6 X9X12+ X1X2X3X4X5X6 X9X13  +X1X2X3X4X5X6 X9X14+ X1X2X3X4X5X6 X9X15+ X1X2X3X4X5X6 X9X16  从上面的求解得出21个最小割集:  P1={ X1,X2,X3,X4,X5,X6,X7,X10}  P2={ X1,X2,X3,X4,X5,X6,X7,X11}  P3={ X1,X2,X3,X4,X5,X6,X7,X12}  P4={ X1,X2,X3,X4,X5,X6,X7,X13}  P5={ X1,X2,X3,X4,X5,X6,X7,X14}  P6={ X1,X2,X3,X4,X5,X6,X7,X15}  P7={ X1,X2,X3,X4,X5,X6,X7,X16}  P8={ X1,X2,X3,X4,X5,X6,X8,X10}  P9={ X1,X2,X3,X4,X5,X6,X8,X11}  P10={ X1,X2,X3,X4,X5,X6,X8,X12}  P11={ X1,X2,X3,X4,X5,X6,X8,X13}  P12={ X1,X2,X3,X4,X5,X6,X8,X14}  P13={ X1,X2,X3,X4,X5,X6,X8,X15}  P14={ X1,X2,X3,X4,X5,X6,X8,X16}  P15={ X1,X2,X3,X4,X5,X6,X9,X10}  P16={ X1,X2,X3,X4,X5,X6,X9,X11}  P17={ X1,X2,X3,X4,X5,X6,X9,X12}  P18={ X1,X2,X3,X4,X5,X6,X9,X13}  P19={ X1,X2,X3,X4,X5,X6,X9,X14}  P20={ X1,X2,X3,X4,X5,X6,X9,X15}  P21={ X1,X2,X3,X4,X5,X6,X9,X16}  (二)结构重要度分析  从以上最小割集中可以看出X1X2X3X4X5X 6在每个最小割集中都出现,所以Ⅰφ(1)=Ⅰφ(2)=Ⅰφ(3)=Ⅰφ(4)=Ⅰφ(5)  =Ⅰφ(6)最大,Ⅰφ(7)=Ⅰφ(8)=Ⅰφ(9)仅次于前面的6个因素,Ⅰφ(10)=Ⅰφ(11)=Ⅰφ(12)=Ⅰφ(13)=Ⅰφ(14)=Ⅰφ(15)=Ⅰφ(16)为最小,仅次于前面的3个因素。  (三)建议  1、加强瓦斯检测,保持监控系统完好,并严格执行“一炮三检”和“三人连锁”等瓦斯检查制度。  2、掘进工作面应保持足够的风量,以避免掘进工作面瓦斯超限和积聚。  3、杜绝电气火源和明火,消灭违章放炮,严禁在井下吸烟,严格按照作业规程作业。  第二节 回采工作面煤尘爆炸事故树分析(事故树见下页)  三、事故树定性分析  事故树最小割集80组,最小径集只有2组,因此,采用最小径集分析比较方便。  最小径集的求解  根据成功树的构造法则,做出成功树。  成功树的结构函数式为:  T′=A1′+A2′  =(B1′×B2′×B3′×B4′)+(X9′×B5′×B6′)  =(X1′X2′X3′X4′X5′X6′X7′X8′)+(X9′X10′X11′X12′X13′)  求得最小割集为:  P1={ X1′X2′X3′X4′X5′X6′X7′X8′}  P2={ X9′X10′X11′X12′X13′}  结构重要度分析:  结构重要度大小排列顺序如下:  Ⅰφ(9)=Ⅰφ(10)=Ⅰφ(11)=Ⅰφ(12)=Ⅰφ(13)  >Ⅰφ(1)=Ⅰφ(2)=Ⅰφ(3)=Ⅰφ(4)Ⅰφ=(5)Ⅰφ=Ⅰφ(6)=Ⅰφ(7)=Ⅰφ(8)  结论:事故树最小割集有40组,根据最小割集的定义任何一组最小割集的基本事件同时发生,顶上事件就必然发生,说明顶上事件发生的途径有40条。因此,这个系统属于危险性较大的系统。最小径集有2组,其中任何一组最小径集的基本事件都不发生,顶上事件就不可能发生,因此,这个系统有2条控制途径。本回答由提问者推荐

4、瓦斯治理技术与瓦斯抽放研究的意义?

因此,为了保证选煤厂的安全生产,笔者根据自己多年的矿井治理瓦斯积聚问题的经验,结合屯兰选煤厂煤仓瓦斯情况,研制了一种“选煤厂煤仓新型瓦斯治理装置”,彻底解决了现有选煤厂煤仓存在的瓦斯超标易造成瓦斯爆炸和治理费用昂贵等难题。 2选煤厂煤仓新型瓦斯治理装置的研究 2.1屯兰选煤厂煤仓瓦斯情况 屯兰选煤厂始建于1997年10月,是设计入选原煤40Mt/a的特大型炼焦选煤厂,1997年10月31日正式投产。现有原煤仓4个,产品仓 4个,2个转载站。屯兰矿生产的原煤由带式运输机运向屯兰选煤厂4个原煤仓储存待选,原煤经洗选后,其产品由带式运输机进入4个不同的产品仓等待外运。缓冲仓2个暂不用,只是在生产紧张时使用。 原煤仓4个每个仓直径φ21m、高42.00m(储煤净高34.62m)、最大储存煤量3600t,原煤仓内的瓦斯浓度高达8.2%。 产品仓4个每个仓直径φ21m、高44.87m(储煤净高39.00m)、最大储存煤量3300t,产品仓内的瓦斯浓度高达9.0% 2.2新型瓦斯治理装置的研究 2.2.1新型瓦斯治理装置的试验研究 为了解决屯兰选煤厂煤仓瓦斯问题,笔者多次到现场实测选煤厂大气参数和多种气体(等20多种),调查和分析屯兰选煤厂历年的大气压力、温度、湿度变化规律。并结合现有的理论结合大量的实践经验,对屯兰选煤厂煤仓和运输长廊瓦斯参数进行正交理论分析,在此基础上进行试验分析,从而得出最佳的试验方案。 对确立的最优方案再进行反复试验,在试验中对试验参数不断修正。对试验结果与现有存在的问题进行科学的比较、分析、归纳、总结,并借助现代分析技术和手段,得出了最佳治理屯兰选煤厂煤仓及运输长廊瓦斯积聚问题的试验方案。 2.2.2煤仓新型瓦斯治理系列装置设计 煤仓新型瓦斯治理技术方案是:选煤厂煤仓瓦斯积聚治理装置由若干个煤仓瓦斯分离器、风幛、双向风窗和焚风通风塔组成,煤仓瓦斯分离器设在煤仓的周边,风幛设在煤仓顶部的中央,双向风窗设在煤仓外壁的上方,檒风通风塔设在煤仓顶部的两边或煤仓外壁的上方。 煤仓瓦斯分离器由筒体、瓦斯释放帽、瓦斯释放孔和过滤网等构成,瓦斯释放帽设在筒体得顶部,瓦斯释放孔设在瓦斯释放帽上,过滤网均匀设在筒体上,煤仓瓦斯分离器主要功能是将煤体内或煤体上方的瓦斯,按所要求的方向分离出来。 风幛是一个圆台型的筒体,双向风窗由向上风叶、向下风叶和框架组成,向上风叶设在框架的上部,向下风叶设在框架的下部, 檒风通风塔由焚风曲线体、变线体、集风道和三叉排风器等构成,主要功能是形成强大的焚风效应,按所要求的方向将瓦斯排到煤仓外。 由于屯兰选煤厂煤仓新型瓦斯治理系列装置采用了煤仓瓦斯分离器、风幛、双向风窗和檒风通风塔,构成了一个综合治理装置,能够降低或消除煤仓中的全部瓦斯,彻底治理选煤厂瓦斯积聚的问题。 3实施效果 3.1安全效果 根据屯兰选煤厂特定的地理环境和气候条件影响的实际情况,根据大量的实践经验和有关理论,确定采用风幛、风窗、通风塔、焚风通风塔等通风设施后,屯兰选煤厂主要生产环节的要害部位和各个局部地点的瓦斯浓度达到以下效果,符合煤矿法律、法规和《煤矿安全规程》要求。 1]原煤仓[包括产品仓]顶部皮带长廊的采用通风设施后瓦斯浓度常年达到0.5%以下。 2]原煤仓[包括产品仓]内部上隅角(死角)采用通风设施后,瓦斯浓度在正常生产情况下0.5%以下。 3]原煤仓[包括产品仓]底部溜煤口仓内,采用通风设施后,瓦斯浓度可达到0.5%以下。 4]原煤仓[包括产品仓]顶部皮带长廊的(有工作人员的场所)的地点,采用通风设施后达到达到各自的《国家标准》和《行业标准》安全浓度。 根据实验结果证明瓦斯浓度由原来的8.2%,常年可降低到0.5%以下,瓦斯浓度完全符合国家标准和行业标准的安全浓度。具有治理瓦斯安全可靠,使企业的安全生产和从业人员的生命安全以及企业财产得到保证,真正意义地实现安全生产。 3.2经济效益评价 根据屯兰选煤厂现有情况概算其经济效益。 3.2.1轴流式通风机方案 该选煤厂原煤仓4个,每仓1台5.5KW轴流式通风机,2#仓另安装1台2×15KW轴流式通风机,仓上走廊有2台5.5KW移动式通风机,仓下安装有1台2×15KW轴流式通风机,放煤溜槽口有2台5.5KW移动式通风机;精煤仓4个,每仓2台5.5KW轴流通风机,仓上走廊有1台5.5KW 移动式通风机,仓下安装有1台2×15KW轴流式通风机,转载点落煤处安装1台5.5KW移动式通风机。 1)瓦斯处理主要费用。根据该选煤厂提供的实际费用:①电费:5.5KW移动式通风机月电耗1980元,年电耗23760元;2×15KW仓下通风机月电耗10800元,年电耗129600元。 2)风机折旧费。2×15KW仓下通风机原价5万元服务年期7a,年折旧费7143元;2.86台为20429元/a;5.5KW移动式通风机原价2.7万元服务年期7a,年折旧费3857元,2.86台为11031元/a。 新型瓦斯积聚治理装置一个相当于2.86台轴流式通风机,且效果比轴流式通风机稳定、可靠。 3.2.2新型瓦斯积聚治理装置方案经济效益 若停用风机,改用瓦斯积聚治理装置则: 1)停1台5.5KW通风机年省费用:23760+11031=34791元/a;停1台2×15KW轴流式通风机其费用:129600+20429=150029元/a。 2)4个原煤仓通风机全部停用(8台5.5KW;2台2×15KW),其费用为:34791×8+150029×2=278328+300058=578386元/a。 3)4个精煤仓通风机全部停用(10台5.5KW;1台2×15KW),其费用为:34791×10+150029=347910+150029=497939元/a。 3.2.3费用 服务年限按20a计算:4个原煤仓为1156.77万元,4个精煤仓为995.88万元,合计156.77+995.88=2152.65万元。 新型瓦斯积聚治理装置的一次性制造加工成本费用为128万元,则节省费用为2024.65万元。 可见在屯兰选煤厂安装“选煤厂煤仓新型瓦斯治理系列装置”以后,由于该装置是安全、经济、永固、无动力的构造设施,以其取代原设计的轴流式通风机,所带来的经济效益相当可观。 3.2社会效益: 新装置填补了我国选煤厂瓦斯治理的空白,开创了我国无动力治理瓦斯新经验和先例,对所有高瓦斯选煤厂的瓦斯治理开辟了一条新途径,为以后大型选煤厂设计提供了先进的新技术,实现了大型选煤厂永久性的瓦斯治理。同时由于该系列装置结构简单,管理方便,不需经常维修,无需专人操作,具有简便易行、经济实用、安全可靠等优点,因此易于在全国煤炭行业[以及矿山]推广使用,具有深远的现实意义。 4、结论 总结“选煤厂煤仓新型瓦斯治理装置”有以下特点: 1)、该技术的发明属于国内首创,世界先进,具有技术先进、科学合理,填补了我国选煤厂瓦斯治理的空白。属于世界性先进技术,达到世界先进水平。 2)、该装置的使用将有效的治理选煤厂煤仓瓦斯积聚问题。它的研制成功将对所有高瓦斯选煤厂煤仓瓦斯治理开辟一条新途径。 3)、该装置是安全、经济、永固、无动力的构造设施,以其取代常用的轴流式通风机,所带来的经济效益相当可观。 4)、该装置结构简单,管理方便,不需经常维修,简便易行,无需专人操作,易于推广使用,且开创了我国选煤厂无动力治理瓦斯经验和先例。 5)、这项新技术的成功运用到设计上将对我国大型选煤厂煤仓瓦斯积聚治理产生深远的意义。给以后大型选煤厂设计提供了先进的新技术。 6)、开创了我国无动力治理瓦斯新经验,不需要巨资安装带动力的通风设备,一次安装,永久使用,经济实用,安全可靠,以确保该系统的安全性。 7)特别指出选煤厂煤仓新型瓦斯治理装置是无噪音、无动力、无污染的通风构造设施,纯属于环保节能型产品。 8)、本装置的原理,可以拓展到所有需要排气、排污的建筑、工厂、矿山,以及民宅、厨房无动力排油烟机等等领域。 该技术可以取消全国选煤厂所有的通风机,而且完全彻底永久解决瓦斯积聚问题。 选煤厂煤仓新型瓦斯治理装置在全国乃至全世界推广使用,开创了我国瓦斯治理的先驱,具有推广使用价值。瓦斯抽放研究煤矿矿井中瓦斯涌出量很大,靠通风难以稀释排除时,可用抽放的方法,排除瓦斯,减少通风负担。40年代末,中国在抚顺煤田进行抽放瓦斯试验,50年代应用于生产,抽出数量逐年增加。其后阳泉、天府、中梁山、包头、南桐、北票等矿区也陆续开展抽放瓦斯工作。1981年全国一百多个矿井安设了抽放瓦斯设备,每年抽放瓦斯达3亿米3,供给工业、民用燃料和作化工原料,变害为利。 抽放工艺 在地面建立瓦斯泵站,经井下抽放瓦斯管道系统与抽放钻孔连接,泵运转时造成负压,将瓦斯抽出,送入瓦斯罐,或直接供给用户。如抽出瓦斯数量较小,或很不稳定,可直接排放到大气中。 抽放方法 按瓦斯来源不同,可分三类:①抽放开采煤层本身的瓦斯。开采高沼气厚煤层时,瓦斯主要来自开采层本身。抚顺煤矿在煤巷掘进前,从底板岩石巷道打钻穿透煤层,钻孔中插入钢管并将孔口周围密封,瓦斯从插管中抽出。因抽放超前于掘进、回采,使采掘工作减少了瓦斯威胁,此法又称“钻孔预抽瓦斯”。②抽放邻近煤层中的瓦斯。在多煤层矿井,用长壁工作面回采时,顶底板岩层和煤层(包括可采层与不可采层)卸压,瓦斯流动性增加,大量涌入工作面,危害生产。通常在回采前打钻孔到顶板或底板的邻近煤层,回采后瓦斯大量流入钻孔,通过孔口插管,将瓦斯抽出。③抽放采空区的瓦斯。有的矿井采空区大量涌出瓦斯,可在采空区周围密闭墙上插入钢管;也可以从巷道向采空区打钻孔,抽放瓦斯。 在条件适宜时还可从地面钻孔抽放瓦斯。优点是不受井下采煤工作的限制和干扰,钻孔抽放工作可超前于采掘工作,抽放时间较充裕。缺点是钻孔较深,需排除孔内积水。 发展趋势 目前中国瓦斯抽放量只占抽放瓦斯矿井全部涌出量的20%。正在研究瓦斯流动规律,加大煤层的透气性和改进抽放工艺,进一步提高瓦斯抽放量。本回答由网友推荐瓦斯治理技术和瓦斯抽放研究的意义?这个你可以先简要概括一下选择瓦斯抽放的必要性:在瓦斯涌出量、煤层瓦斯含量较大的工作面,使用通风排放瓦斯无法满足正常的生产需要,容易造成瓦斯超限事故,给引发瓦斯爆炸等恶性爆炸事故的发生埋下隐患。因此,需要采取瓦斯抽放的方法,通过对本煤层预抽、上隅角埋管抽放、高位钻场抽放、挂耳抽放等抽放方法来降低煤层瓦斯含量及煤层残存瓦斯含量,从而降低瓦斯涌出量,在通风情况不变的情况下,有效降低工作面的瓦斯浓度,保证矿井安全生产工作的正常进行。

参考资料:《多年技术工作经验》

5、论文格式

一、内容要求 毕业设计报告正文要求: (一)理、工科类专业毕业设计报告正文内容应包括:问题的提出;设计的指导思想;方案的选择和比较论证;根据任务书指出的内容和指标要求写出设计过程、课题所涉及元件结构和相关参数的设计计算,有关基本原理的说明与理论分析;给出所设计课题实际运行的数据或参数,并与理论设计参数进行比较和分析,说明产生误差的原因。最后要对所设计课题实用价值做出评估说明;设计过程中存在的问题,改进意见或其它更好的方案设想及未能采纳的原因等。 (二)经济、管理类专业毕业设计报告或论文正文应包括:问题的提出、设计的指导思想;设计方案提出的依据,设计方案的选择和比较;设计过程;所运用的技术经济分析指标和方法;数学模型及其依据,数据计算方法;对设计方案的实用性和经济效益等方面做出评估;对设计实施过程中存在的问题 ( 或可能发生的问题 ) 提出合理化建议。毕业论文的基本论点、主要论据;根据国家有关方针、政策及规定联系实际展开理论分析。 (三)文科类专业毕业设计报告或论文正文应包括:问题的提出、解决问题的指导思想;解决方案提出的依据,解决方案的选择和比较,结论。 二、论文印装 毕业论文用毕业设计专用纸打印。正文用宋体小四号字,行间距为24磅;版面页边距上3cm,下、左2.5cm,右2cm。 三、论文结构、装订顺序及要求 毕业论文由以下部分组成: (一)封面。论文题目不得超过20个字,要简练、准确,可分为两行。 (二)内容。 1、毕业设计(论文)任务书。任务书由指导教师填写,经系主任、教务部审查签字后生效。 2、毕业设计(论文)开题报告; 3、毕业设计(论文)学生申请答辩表与指导教师毕业设计(论文)评审表; 4、毕业设计(论文)评阅人评审表; 5、毕业设计(论文)答辩表; 6、毕业设计(论文)成绩评定总表; 7、中英文内容摘要和关键词。 (1)摘要是论文内容的简要陈述,应尽量反映论文的主要信息,内容包括研究目的、方法、成果和结论,不含图表,不加注释,具有独立性和完整性。中文摘要一般为200-400字左右,英文摘要应与中文摘要内容完全相同。“摘要”字样位置居中。 (2)关键词是反映毕业设计(论文)主题内容的名词,是供检索使用的。主题词条应为通用技术词汇,不得自造关键词。关键词一般为3-5个,按词条外延层次(学科目录分类),由高至低顺序排列。关键词排在摘要正文部分下方。 (3)中文摘要与关键词在前,英文的在后。 8、目录。 目录按三级标题编写,要求层次清晰,且要与正文标题一致。主要包括绪论、正文主体、结论、致谢、主要参考文献及附录等。 9、正文。论文正文部分包括:绪论(或前言、序言)、论文主体及结论。 (1)绪论。综合评述前人工作,说明论文工作的选题目的和意义,国内外文献综述,以及论文所要研究的内容。 (2)论文主体。论文的主要组成部分,主要包括选题背景、方案论证、过程论述、结果分析、结论或总结等内容。要求层次清楚,文字简练、通顺,重点突出,毕业设计(论文)文字数,一般应不少于8000字(或20个页码)。外文翻译不少于3000字符,外文参考资料阅读量不少于3万字符。 中文论文撰写通行的题序层次采用以下格式: 1 1.1 1.1.1 1.1.1.1 格式是保证文章结构清晰、纲目分明的编辑手段,毕业论文所采用的格式必须符合上表规定,并前后统一,不得混杂使用。格式除题序层次外,还应包括分段、行距、字体和字号等。 第一层次(章)题序和标题居中放置,其余各层次(节、条、款)题序和标题一律沿版面左侧边线顶格安排。第一层次(章)题序和标题距下文双倍行距。段落开始后缩两个字。行与行之间,段落和层次标题以及各段落之间均为24磅行间距。 第一层次(章)题序和标题用小二号黑体字。题序和标题之间空两个字,不加标点,下同。 第二层次(节)题序和标题用小三号黑体字。 第三层次(条)题序和标题用四号黑体字。 第四层次及以下各层次题序及标题一律用小四号黑体字。 (3)结论(或结束语)。作为单独一章排列,但标题前不加“第XXX章”字样。结论是整个论文的总结,应以简练的文字说明论文所做的工作,一般不超过两页。 10、致谢。对导师和给予指导或协助完成毕业设计(论文)工作的组织和个人表示感谢。文字要简洁、实事求是,切忌浮夸和庸俗之词。 11、参考文献及引用资料目录(规范格式见附文)。 12、附录。 13、实验数据表、有关图纸(大于3#图幅时单独装订)。 (三)封底。 附:规范的参考文献格式 参考文献(即引文出处)的类型以单字母方式标识:M——专著,C——论文集,N——报纸文章,J——期刊文章,D——学位论文,R——报告,S——标准,P——专利;对于不属于上述的文献类型,采用字母“Z”标识。 参考文献一律置于文末。企业安全文化建设刍议摘要 本文探讨了安全文化的定义、本质以及在企业生产中的作用,并结合实际探索、分析了建设企业安全文化需把握的几个要点。关键词 安全文化 探索 创新 安全文化伴随着人类劳动的出现和发展而产生、发展。随着时代的发展和进步,安全文化作为一种价值观和“以人为本”的全新理念,在人们日常工作、生活中发挥着越来越明显的作用。那么,什么是安全文化?安全文化的本质是什么?安全文化的作用是什么?作为一个企业如何才能更好地建设安全文化?笔者谈一下自己的一些看法。第一,安全文化的概念和本质本文开头已经点出,安全文化伴随人类生存发展的全过程,换而言之,只要有人或者有人类活动就有安全文化。这样讲读者可能不理解:远古的蛮荒时代,人类有安全文化吗?答案是肯定的。因为,无论是现代工业生产还是远古狩猎,其根本目的只有一个,简单讲就是追求更高的生活质量,也就是更好地活着。为了更好地活着,就要劳动,就要工作,就要与非人类的一切物质或精神以及人类之间进行接触、融合。例如,机器、矿山、巷道、瓦斯、自救器或者森林、河流、野兽、天气、地震,或者战争、冲突、矛盾等等,这就不可避免地存在一个生命安全问题。工作、劳动效率提高越快,安全保障系数就越低,如何找准安全与效率的最佳结合点,在保证安全的状态下不断提高工作或劳动效率,并形成一种既约定俗成,又不断创新完善的价值观和方法论,就是安全文化所要解决的问题,这也是安全文化的本质所在。人类在社会发展过程中,一直在潜意识或有意识、有针对性地探索和掌握安全文化。概而言之,安全文化是人类在现实工作生活中对自身或他身安全在由感性向理性认识、把握和实践过程中,追求最佳安全状态的要求、意愿和氛围。随着社会文明程度的不断提高,坚持以人为本、从维护人的生命健康角度、突出通过人的素质提高和人的主观能动性来保证安全的安全文化观,是包括所有企业在内,全社会共同努力追求的方向。第二,安全文化在企业生产中的作用刚才已经指出,安全文化所要解决的问题,也就是它的目的,就是形成最大限度的保证工作(劳动)效率和安全系数在临界点以内稳定状态的共识,也就是在尽量避免人身和非人身事故发生的过程中,形成共同的价值取向和行为准则。对于一个企业来讲,任何避免人身和非人身事故的政策、制度、机制、措施和方式方法,得到全体员工的认同,就是企业安全文化的目的和作用发挥的落脚点。基于此种认识,要发挥好安全文化的作用,就要首先了解事故发生的根源。一般而言,事故发生原因主要有两种:一种是人为原因(非物原因),另一种是纯物的原因,人为原因大家比较好理解,对于纯物原因(即纯粹由于非人的意志为转移的原因,例如:地震、海啸等自然灾害)可能比较陌生。为什么讲是纯物原因呢?因为在企业生产中,事故大多是人为原因造成的,一般概念的物的原因也大多与人的行为有直接或间接联系,而纯物的原因在企业事故中的比例相当少,除了不可预见的自然灾害外几乎没有(实际上,随着科学技术的不断发展,不可预见的自然灾害也逐渐被人所预见,只是由于科技水平或资金投入等问题而导致预见的准确度高低不同罢了)。例如在煤矿生产中,有人说地质条件复杂、断层多、巷道变形等自然状态是非人为原因,但事实上这也属于人为原因,之所以存在这样的误区,刚才提到主要是由于科学技术水平没有达到能够准确预见这些非正常现象的能力,或者由于资金、人才等原因而无力去预见,而这些正是由于人的直接或间接原因而造成或影响的。因此,在企业生产过程中,抓住了“人”的问题,安全工作也就迎刃而解,而安全文化正是解决这个问题的重要保证。明确了事故根源和解决这个根源的途径,也就明确了安全文化在企业生产中的作用。第三,企业安全文化的建设企业以人为本。要充分发挥人在企业安全生产的主导地位和能动性,确保各项安全措施的落实,并自觉遵守执行,就必须建设好、使用好安全文化,笔者认为,要重点健全完善以下几个机制:1、完善安全战略指导机制,提高安全文化的方向性。对于所有行业、企业来讲,安全的本质、目的都是不变的,但具体到每一个行业、每一个企业,由于所经营的产业不同,员工所从事的岗位不同,在大的安全战略指导方针基本不变(例如我国的安全生产指导方针为:安全第一、预防为主)的前提下,必须要有符合本行业或本企业的安全生产方针,例如龙矿集团的安全方针为:以防为主,防治结合、齐抓共管、长治久安,同时根据不同时期有相应安全指导机制。洼里煤矿根据自身情况制定了“安全第一、预防为主、规范行为,注重基础”的安全方针,并进一步提出了安全生产“三原则”(即:达不到安全状态、优良的工程质量和“精品工程”标准下的安全质量标准化动态达标不准生产)和“六个确保”的安全保证机制,明确了安全工作的主攻方向和战略方针,做到了安全工作有的放矢,为最大限度发挥“人”在安全工作中的能动性奠定了基础。2、完善安全目标考核机制,提高安全文化的持久性。安全工作是一项长期、复杂、艰巨的工作,必须持之以恒,常抓不懈。要建立可行的目标考核机制,让员工始终保持一种丝毫不放松、不麻痹的思想状态。例如煤炭行业根据行业规律、特点,都要制定一个年度或更长时期的安全考核目标。同样,每个企业都根据自身情况都要制定一个安全目标和考核措施,目标及考核措施确立的科学合理与否,对于在目前国有体制下经营的企业来讲,对于干部员工尤其是领导干部的安全生产意识的影响是比较明显的,这也是左右企业安全文化建设能否持久性的一个重要原因。3、完善安全理念渗透机制,提高安全文化的层次。企业安全文化能否最大限度得到员工认可认同,很大程度上是企业各种安全理念渗透的效果。各种符合企业安全生产特点的安全理念在挖掘提炼推广渗透之前,只是被企业少数人全面掌握,而要变成全体员工的共识,必须建立健全完善的理念渗透机制和措施。在这方面,洼里煤矿建立了完善的渗透保证体系,在将各种安全理念、警句汇编成册的基础上,要求每天班前班后会进行学习讲解,自觉指导并运用到安全生产中,并定期开展理念渗透专题研讨、讲座、交流活动,提高员工对各种安全理念的认识程度,同时强化监督检查和考核兑现。通过制度约束和柔性引导,使广大员工对安全工作重要性的认识有了新的飞跃,企业安全文化层次得到极大提高。4、完善安全制度落实机制,提高安全文化的执行力。安全文化的建设,从根本上讲,就是企业对各种安全制度措施落实能力的建设。严格讲,员工的行为是靠制度约束的,一个再好的安全制度,员工不执行,干部不监督不落实,就体现不出制度的严肃性。长此以往,员工的不规范行为将养成习惯,这就给事故的发生造成最大的可能。因此,在加强安全制度完善的基础上,强化安全制度落实机制建设是一项重要工作。洼里煤矿通过健全并严格执行系统的目标责任、监督考核和落实兑现保障体系,不断强化干部的走动式管理,充分发挥“三工并寸、动态转换”机制作用,促进员工在遵守各种安全制度措施和6S、4E岗位标准上达到行为自觉养成,达到一出手就干标准活,从而不断提高了安全文化的执行力。5、完善安全教育培训机制,营造安全文化氛围。员工安全意识、安全素质和安全技能的提高光靠制度管理和约束是远远不够的,必须建立完善的教育培训机制、采取灵活多样的教育形式,才能达到预期效果。在这方面,洼里煤矿针对本矿协议工多、员工整体偏低的实际情况,在员工业务培训上,建立完善了《员工培训管理制度》、《特殊岗位工种培训管理规定》、《新工人业务培训考核管理办法》等一系列完善的业务培训机制,在组织学习上,除了让各级培训中心教师和本矿各专业副总担任授课人外,专门聘请有关院校和有实践经验的专家进行讲课,并采取知识考试和现场操作相结合的考核方式,对不及格的坚决不准上岗,极大提高了员工队伍的整体业务素质;在安全宣传教育方面,该矿在充分利用各种会议及广播、电视、板报、宣传栏、安全文化长廊等宣传教育外,注重方式方法的创新。例如,坚持人性化教育,创新并推广了每日一题、员工祝福、亲人嘱托、“三违”罚款单家属签字、“三违”讲评、亮相等方法,同时注重方式方法的多样性,开展了党员“零三违”考核竞赛、安全流动红旗、安全知识竞赛、有奖问答、技术比武、劳动竞赛、安全座谈以及征集安全漫画、安全警句格言、举办千人安全签名等活动,营造了浓厚的安全氛围,促使员工积极学业务、练本领、掌握安全技能,使“我要安全”变成了员工的共识和自觉行为,有效提升了企业整体安全文化水平。本回答被提问者采纳论文格式1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容: a.提出问题-论点; b.分析问题-论据和论证; c.解决问题-论证方法与步骤; d.结论。 6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。按照上边的论文格式来写,可以使你的论文更加容易被读者了解,被编辑采纳。本回答被网友采纳

6、求一篇瓦斯检查工技师论文,2500字的

维修电工技师论文 《变频器在使用中遇到的问题和故障防范 》 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波 1, 安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。 除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。

7、荥巩煤田谷山井田煤层气赋存特征

马耕1 苏现波2 林晓英2 张志林1 王红军1

(1.鹤壁煤业(集团)有限责任公司 河南鹤壁 458000;2.河南理工大学资源环境学院 河南焦作 454000)

作者简介:马耕,男,1958年生人,教授级高工,中国矿业大学在读博士,鹤煤煤业(集团)有限责任公司副总经理。长期从事煤层气井下油采和煤矿安全治理工作,在国内外学术期刊发表论文20余篇,获得近10项省部级科技进步奖。

摘要 荥巩煤田二1煤储层内赋存着丰富的煤层气资源,资源总量达1087.86×108m3。谷山井田是该煤田勘探程度较高、正在建井的一个井田。本文根据勘探、建井阶段的资料,结合实测数据,对该井田煤层气的赋存特征进行了系统论述,指出该区煤层气的赋存以风氧化带浅、含气量高、资源丰度大、渗透性差、储层压力高、不含水为特征。高演化程度、镜质组为主的煤岩组成决定了高生气量;泥质岩类顶底板不仅为煤层气的保存提供了有利条件,而且作为隔水层阻止了煤储层与含水层之间的水力联系,使得煤层成为干层,这种不含水的煤层气储层在国内并不多见;重力滑动构造造成了煤体严重破坏,普遍发育的渗透性极低的糜棱煤,为煤层气的开发带来了困难,同时也是煤与瓦斯突出的主因。

关键词 谷山井田 煤层气 赋存特征 含气量

CBM Existence Features in Gushan Coalmine Area of Xinggong Coal Field

Ma Geng1,Su Xianbo2,Lin Xiaoying2,Zhang Zhilin1,Wang Hongjun1

(1.Hebi Coal Group Company Ltd.Hebi 458000;2.Resources and Environment Institute of He“nan Polytechnic University,Jiaozuo 454000)

Abstract:There is rich CBM resources in Xinggong coal field which is about 108.8 billion cubic meters.Gushan coalmine is an under constructed coalmine the exploration extent of which is highest in Xinggong coalfield.Based on the data from exploration and construction of the coalmine,combined with practical mining data,CBM existence feature in the coalmine was discussed in detail.It was concluded that the coal seams of Gushan coalmine are characterized by shallow weathering zone,high gas content,high CBM concentration,low permeability,high reservoir pressure and low water content.High metamorphic grade and high vitrinite content decided the gas content in Gushan coal seams.Mudstone as roof and bottom of coal seams provides both favorable conditions for CBM accumulation and a good water-resisting layer that prevents the connection between coal seams and water zones,which results in coal seams with very low water content.The non-water coal seams like Gushan coalmine are seldom found in other parts of China.On the other hand,in Gushan coalmine,the slippage effect of gravity produced serious damage to the coal seams,as a result,soft coal with very low permeability well developed,which causes lots of difficulties for CBM development and usual burst of coal and gas.

Keywords:Gushan coalmine;CBM;existence features;gas content

引言

以煤层气地质学为指导,系统探讨煤层气赋存特征是国内外学者共同关注的焦点,这一研究不仅为煤层气勘探开发提供理论依据,也为煤矿瓦斯灾害预测和治理提供信息。近30年的理论和实践表明,煤层气地质学的研究主要集中在六个方面:从构造背景、煤层空间几何形态、煤阶、含气量、渗透性、地下水动力学等六个方面进行煤层气地质学方面的研究[1-8]

荥巩煤田谷山井田以往多为地方煤矿开采,关于煤层气方面的研究几乎为空白。因此本文将以勘探、建井阶段的资料为主,结合此次实测的资料对二1煤煤层气赋存特征进行系统论述,旨在为煤层气开发和煤矿瓦斯灾害治理提供依据。

1 煤层气赋存特征

1.1 构造特征

荥巩煤田位于荥密背斜北翼,构造形式以断层为主,且多发育在煤田外围地区,对煤田影响不大。褶皱不发育,仅在南部有一规模巨大的荥密背斜呈东西向分布。

谷山井田位于荥巩煤田之中段,以35勘探线与大峪沟井田分界,东部以米河东岸与王河及黄庄井田相邻,南部(浅部)以二1煤露头为界,北部(深部)以煤层底板标高200m为界。走向长10~11km,倾向宽2.5~4km,面积30km2。地层走向为北西、南东方向,倾向北东15°左右,倾角较平缓,一般8°~12°,呈一单斜构造形态。本井田构造简单,各种构造形迹严格受区域构造所控制。该井田断裂构造不太发育,但断裂形式多样。以高角度的正断层为主,亦有低缓角度的正断层(F210),但最典型的是滑动构造。井田内含煤地层产状无明显变化,略有浅部缓,深部陡之趋势。全区共查明断层47 条,其中落差大于30m的12条,20~30m的10条,小于20m的25条,井田内共有断层30条,切割煤层者仅有F9、F20、F27等共8条。受嵩山隆起、掀斜、拉伸所引发的重力滑动和南北向侧向挤压的影响,本区滑动构造发育,整个井田范围内均有分布,呈由东向西、由南向北减少的趋势。由于滑动构造的影响,使本区部分地区煤层变薄或缺失(图1)。

图1 谷山井田山西组二1煤厚度及底板等高线图

1.2 煤层空间展布

谷山井田地层出露零星,主要含煤地层为太原组、山西组、下石盒子组和上石盒子组分为九个含煤组段(表1)。其中,山西组与太原组为本区主要含煤地层,其中山西组的二1煤层为本区的主要可采煤层,太原组的一1煤为大面积可采煤层。

中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集

1煤层厚0~13m,平均厚3.59m。煤层厚度变化较大,区内出现不可采带14处,最大不可采面积达0.16km2。在局部地段具突然增厚变薄及尖灭现象,最大煤厚可达10余米。从二1煤层等厚线图可以看出(图1):研究区中部煤层较厚,浅部及深部薄,但就全区而言,煤体普遍呈长舌形,形成一系列厚薄相间,按一定方向排列的煤层增厚带和变薄带。

造成二1煤层厚度变化的原因有两个:沉积背景和滑动构造。潮控三角洲环境形成的河口沙坝与分流间湾沉积,导致三角洲废弃之后的覆水条件与成煤物质堆积速率的不同。煤层及其底板泥岩的厚度变化均受砂岩体的控制,煤层、泥岩与砂岩厚度呈互为消长的关系,在砂脊顶部煤层变薄或尖灭,而在砂脊两侧聚积较厚煤层。而滑动构造是本井田煤层缺失或变薄的主要原因。如前所述,由于煤是一种低扬氏模量、高泊松比的特殊岩石,随嵩山的隆起产生的由南向北的滑动,主滑面优先选择煤层或其顶底板泥岩。这样就造成煤层被吞蚀。由于这种滑动是由南向北的,所以滑动构造呈近东西向展布,且越向南规模越小,薄无煤带范围也越小。

1.3 煤阶、储层压力、吸附特性、渗透性

该井田二1煤为无烟煤,镜质体反射率在4.9%左右;高煤阶、高镜质组含量不仅决定了生气量大,而且煤的吸附能力较强,兰氏体积为45m3/t左右,兰氏压力为1.82MPa左右。煤储层压力较高,为0.84~1.02MPa。

研究区内煤层均为糜棱煤,即V类煤(全粉煤)。可详细区分为鳞片状和土状煤,以及“块状煤”。所谓的“块状煤”是指已经破坏为鳞片状和土状的煤,在构造应力或重力的作用下再固结成具有一定强度的块状煤,其破坏程度更深。由于煤体结构破坏严重,煤储层渗透性极差。

2 煤层气含量及其控制因素

荥巩煤田二1煤储层内赋存着丰富的煤层气资源,资源总量达1087.86×108m3,资源丰度为1.35~2.76m3/km2。谷山井田是该煤田勘探程度较高、正在建井的一个井田,井田内煤层气含量高,一般为10~34.27m3/t,总体上表现为南低北高、西低东高的趋势(图2)。

图2 谷山井田山西组二1煤煤层气含量等值线图

控制煤层气含量的因素主要有以下几个方面:

(1)顶底板。二1煤层常有0.50m左右的炭质泥岩伪顶和伪底(图3)。其顶板为黑色泥岩与砂质泥岩,一般厚2~7m;底板为富含植物根化石的泥岩与砂质泥岩,一般厚0.50~5m。有利于煤层气的保存。另外局部地段二1煤底砂岩为直接底板。

图3 谷山井田山西组二1煤伪顶厚度等值线图

(2)风氧化带。煤层露头煤层气散失和空气的混入使得煤层气中的甲烷含量降低,二氧化碳、氮气含量增高,一般取甲烷浓度80%为风氧化带的底界。该区甲烷组分含量为80%对应的煤层埋深为38~73m,即风氧化带深度为38~73m,如此浅的风氧化带是国内罕见的,充分说明煤体本身的渗透性差。

(3)断层的封闭性。研究区内的断层中F20、F235、F237、F238四条断层切割煤层,根据分析在断层面附近均产生有糜棱煤,并且于断层两侧对接的均为泥岩或砂质泥岩,断面的胶结类型为钙质或泥质胶结,有利于煤层气封闭。

(4)滑动构造。研究区内重力滑动构造造成了煤体严重破坏,煤储层透气性极低,为煤层气的开发带来了困难。二1煤层顶板滑动构造破碎带,滑面附近产生一致密、光滑的隔水、隔气的糜棱岩层,成为阻止煤层气向顶底板运移的屏障,起到了封闭煤层气的作用。在滑动构造造成的煤层局部增厚的区域,煤层气含量则更高。如果滑动构造没有形成致密的糜棱岩层,则破碎带将成为游离态煤层气储存的空间。由于破碎带上部发育致密的泥岩盖层,使得煤层内扩散来的煤层气在破碎带内得以保存,成为煤成气。这种状态下的煤成气是非常利于开发利用的。

(5)水文地质条件。国内外目前已经进行商业开发的煤层气藏大部分与地下水有着密切的关系,排水—降压—采气已经成为不争的事实。但近几年加拿大发现的不含水的煤层气藏,并获得了商业产能。我国还没有类似的报道。谷山井田山西组二1煤层的上部为山西组砂岩含水层,下部为太原组灰岩含水层。这两个含水层与煤储层之间存在致密的泥岩、砂质泥岩隔水层。因此,煤层为独立的水文地质单元,与含水层之间没有水力联系。极低的渗透性使得沿煤层露头的地下水补给量非常有限,就是煤层气在这类煤储层内的迁移都是以扩散为主要方式,地下水在煤层内的迁移更不可能。这正是煤储层成为干层的主因。这种干层使得煤层气开发排采费用降低。

3 结论

(1)荥巩煤田谷山井田二1煤层厚0~13m,厚度变化较大,局部地段具突然增厚、变薄及尖灭现象,主要受滑动构造的影响。

(2)煤储层渗透性极差,煤的吸附能力强,储层压力高。

(3)井田内煤层气含量高,一般为10~34.27m3/t,资源丰度高。

(4)煤的演化程度高、煤岩组分主要以镜质组为主都有利于煤层气的生成。炭质泥岩的伪顶和伪底、浅风氧化带、断层两侧对接关系及滑动构造的影响等都有利于煤层气的保存。

(5)顶底板的泥岩类有效的阻隔了含水层与煤层之间的联系,使该区煤层呈几乎不含水的状态,成为干层。

(6)滑动构造的存在造成煤体破坏严重,高煤层气含量、强煤体破坏程度决定了本区瓦斯灾害严重,常规工艺开发煤层气困难。

参考文献

[1]Scott,A.R.2002.Hydrogeologic factors affecting gas content distribution in coal beds,International Journal of Coal Geology,50:363~387

[2]Kaiser,W.R.,Hamilton,D.S.,Scott,A.R.,Tyler,R.,Finely,R.J.1994.Geological and hydrological controls on the producibility of coalbed methane.Journal of the Geological Society of London,151:417~420

[3]Ayers W.B.Jr.2002.Coalbed gas systems,resources,and production and a review of contrasting cases from the San Juan and Powder River basins.AAPG Bulletin,11:1853~1890.

[4]SU Xianbo,LIN Xiaoying,SONG Yan and ZHAO Mengjun.2004.The classification and model of coalbed methane reservoirs.Acta Geologica Sinica,78(3):201~205

[5]苏现波,陈江峰,孙俊民等.2001.煤层气地质学与勘探开发,北京:科学出版杜.pp.238

[6]张建博,王红岩,赵庆波.2000.中国煤层气地质.北京:地质出版杜.pp.189

[7]Xianbo Su,Xiaoying Lin,Mengjun Zhao,Yan Song and Shaobo Liu.The upper Paleozoic coalbed methane system in the Qinshui basin,China.AAPG Bulletin,89(1):81~100

[8]Xiaobo Su,Xiaoying Lin,Shaobo Liu,Mengjun Zhao,Yan Song.Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China.International Journal of Coal Geology,62:197~210

  • 官方服务
    • 官方网站

8、MEMS技术在煤矿瓦斯灾害预测中的应用

李月周瑶琪

(中国石油大学(华东)地球化学与岩石圈动力学开放实验室 山东东营 257061)

作者简介:李月,女,1979年12月生,河北沧州人,2002年毕业于中国石油大学石油地质专业,获学士学位,在读博士研究生,研究方向:地质资源与地质工程,电子信箱:lyysy_79@163.com。

摘要 在利用MEMS技术对花岗岩样的压裂过程进行监测的基础上,应用对破裂的监测原理,探讨了MEMS技术在预测瓦斯爆炸方面的应用。实验中,用压机对岩样进行持续施压,观测到4批微破裂。主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝。基于上述原理,把该项技术用于预测由于入为采矿所产生的矿震以及天然地震所造成的矿山爆炸也将产生较好的效果。

关键词 MEMS技术 压裂 微破裂 煤矿灾害

Application of MEMS in Forecast of Gas Disaster of Coalmine

Li Yue,Zhou Yaoqi

(Geochemistry & Lithosphere Dynamic Open Laboratory,China Universityof Petroleum,Dongying 257061)

Abstract:Based on the monitoring to the fracturing process of the granitic sample by MEMS,applying the monitoring principle,we discussed the application of MEMS in forecasting the gas blowing up.In this experiment,continually forcing to the sample,we observed four series of micro-fracture.The anterior three series of microfracture before the main fracture were because of the crack in the sample centralizing and connecting,which was regarded as the portent of the earthquake.The main-fracture produced the crack in macro.Based on the beforementioned principle,it was concluded that the forecast of mine blast resulted from the mining and crude earthquake had the good effect by this technology.

Keywords:MEMS;fracturing;micro-fracture;coal mine disaster

序言

MEMS(Micro-Electro-Mechanical Systems)通常称为微机电系统技术,其含义是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,包括接口、通信和电源等于一体的微型器件或系统。[1]

矿难在近几年的重大伤亡事故中占据相当大的比重,瓦斯爆炸以及入工诱发地震更是给入们带来了极大的威胁。本文主要是在实验的基础上探讨MEMS技术在预测煤矿灾害中的应用。

1 实验

实验主要是利用MEMS技术敏感的特点,通过对花岗岩破裂过程的监测,观察微破裂发生时传感器的瞬间反应。

1.1 样品和观测系统简介

样品采自山东莱州,属于燕山期花岗岩。加工成50×15×7.5 cm3的实验样品。花岗岩具有均匀的颗粒结构,主要由石英、长石和黑云母以及少量重矿物组成。长石最大斑晶可达5mm左右,一般颗粒粒径为0.5~3mm。黑云母则通常沿石英长石颗粒边缘呈线状分布(见图1)。

图1 花岗岩显微结构(正交偏光×50)

传感器采用东营感微科技开发公司生产的4个ME MS-1221 L 型单分量加速度传感器。其灵敏度为2 V/G,分辨率为10-4G,频带范围0~1000Hz。数据采集和分析系统为东营感微科技开发公司开发的通用数据监测和分析软件RBH-General。

压裂实验使用中国石油大学机电学院矿机实验室WE-300型压机(图2)。观测系统如图2(b)以及图3所示。

图2 实验用压机及观测系统

a为WE-300型实验用压机,b为岩样观测系统传感器放置和受压支撑位置

图3 观测系统平视图

其中编号1、2、3、4为4个传感器,传感器1、4靠近岩石块边缘。4个传感器在一条水平线上。1号传感器与2号传感器中心间隔10cm,3号与4号之间也是同样间隔。传感器的半径为2.5cm

1.2 实验过程与数据讨论

1.2.1 实验过程

首先将岩样平放在压机上,并使得岩样两端距支撑线的距离相等,同时记下两侧距离值,以便清楚岩样受压的力臂;然后将4个传感器依次放在岩样上面(图3),并记下各自的位置,同时将传感器和数据采集分析系统相连,以便对不同部位的微破裂所发出的信号进行记录。

时间记录从0秒开始,数据采样频率为4000Hz。压力的施加过程是循序渐进的,压力从0 kN 开始逐渐增大,观察数据的变化,开始记录的是噪声的频谱,当压力增加到致使岩样内部结构发生变化时,频谱即刻发生变化,频谱的变化过程将在下面进行讨论,其中红色代表传感器1的频谱,黑色代表传感器2的频谱,蓝色代表传感器3的频谱,黄色代表传感器4的频谱。在近360秒的压裂过程中,真正的岩样破裂是在最后一分钟内完成的,即分别在302.290~303.826 s;305.599~307.135 s;316.793~318.329 s和357.923~360.258s,岩样共发生了四批微破裂。除了最后一批微破裂持续时间达到2s以上,之前的三批微破裂持续时间均少于1.5 s。每批微破裂均由一组密集的微破裂组成,单次微破裂持续时间一般不超过50毫秒。

1.2.2 压裂过程数据记录与简析

下面依时间顺序分别选取10个有代表性的时间段所记录的频谱特征进行讨论,由于技术原因,目前所用传感器的精度还不足以区分破裂发生时接收信号的准确时间,我们将在以后的工作中逐步解决这个问题。

(1)0.291~31.826s受压开始后的噪声谱(图4):刚开始施压不久,虽然各传感器接收的噪声有所差异,但是总体来说噪声主要频率集中于50~300Hz 低频区和400~750Hz的高频区,4号传感器由于处于距离油泵较远的位置,因此振幅相对于其他三个来说略低,并且频率分布于20~200Hz和600~750Hz 两个更低和更高的区域,不同传感器所记录的噪声差异主要与它们不同的位置有关。

(2)31.990~33.526s噪声谱(图5):相对于0.291~31.826s受压开始后的噪声谱来说噪声的振幅增大了近一倍,但是频率仍然以集中于低频区为特征,高频幅度相对低频区有所压制,这说明岩样内部结构受压力影响有所变化,噪声振幅的突然增大有可能是因为油泵不均匀施压的结果。

图4 0.291~31.826s受压开始后的噪声谱

图5 31.990~33.526s噪声谱

(3)300.665~302.201 s噪声谱(图6):临近微破裂发生前,噪声水平进一步降低,尤其是2号、1号和4号传感器位置降低明显。3号位置噪声水平相对较大。

图6 300.665~302.201s噪声谱

(4)302.290~303.826s微破裂发生时的频谱(图7):这是岩样发生首批微破裂时的频谱特征。从中可以明显的看出振幅异常,不同的传感器得到的数据有所差别:1、2号传感器的频率范围大约集中在700~800Hz,3、4号传感器,尤其是3号受到噪声的影响比较大,对微破裂的反应不是很明显。3号传感器的频率范围大约在500~600Hz之间,4号的频率范围大约在650~750Hz之间。首批微破裂只是改变了岩样内部的细微结构,宏观上没有发生什么变化。

图7 302.290~303.826s微破裂发生时的频谱

(5)305.599~307.135s微破裂发生时的频谱(图8):相对于302.290~303.826s微破裂时的频谱明显具有向低频方向移动的特征,频率范围大约集中在650~750Hz之间。

图8 305.599~307.135s微破裂发生时的频谱

(6)307.612~309.147s噪声谱(图9):微破裂之后继续加压岩样暂时不会再次发生破裂,和开始时的噪声谱特征基本相同,但高频噪声相对高于低频噪声,表示岩样内部结构已发生变化。

图9 307.612~309.147s噪声谱

(7)316.793~318.329s微破裂发生时的频谱(图10):第三批微破裂相对于前两批破裂强度大,振幅增强,随着压力的增大,在前面破裂产生的基础上,当岩样内部裂缝再次发育、贯通,岩样就会发生破裂。各个不同的传感器在频谱特征上差别较大,频率范围各不相同,其中1号传感器记录到微破裂的频率范围大约在350~500Hz之间,2号传感器记录到的频率范围大约在450~550Hz之间,3号传感器记录到的频率范围大约在400~500Hz之间,4号传感器记录到的频率范围大约在650~750Hz之间。

图10 316.793~318.329s微破裂发生时的频谱

(8)326.534~328.070s噪声谱(图11):第三批微破裂发生之后,由于岩样已经产生了裂缝,继续加压在很短的时间内对岩样将不会产生大的影响,因此表现出来的仍然是压机噪声的频谱特征。

图11 326.534~328.070s噪声谱

(9)358.723~360.258s主破裂发生时的频谱(图12):继续加压之后,岩样在前面微破裂的基础上发生更强的破裂,即主破裂。从我们所采集到的数据来看,这次破裂幅度比前面破裂要大得多,并且峰值具有明显向低频区移动的趋势。各传感器的频率范围也具有明显的差异:1号传感器的频率范围在300~500Hz之间,2号传感器的频率范围在200~300Hz之间,3号传感器的频率范围在350~550Hz之间,4号传感器的频率范围在500~700Hz之间。因为最终的破裂面位于2号和3号传感器之间,并且最后的破裂向2号传感器方向伸展,所以2号和3号传感器记录的微破裂振幅相对较低,并且频率也偏低,尤其是2号传感器。而相对远离破裂面的1号和4号传感器位置记录的微地震幅度和频率都相对要高许多。这可能与岩样较小,离破裂面越远传感器的位移越大有关。

图12 358.723~360.258s主破裂发生时的频谱

(10)361.335~362.871 s主破裂发生后的噪声谱(图13):主破裂发生之后施加的压力对岩样已经不能产生任何作用,由于岩样已经完全破裂,并且这时我们在岩样的外观上已经可以清楚的看到一条裂缝,继续加压,这条裂缝就起到了卸压的作用,因此继续施加压力,我们采集到的只是压机所发出的噪声的频谱。但相对刚开始施压时的噪声谱而言,由于岩样已发生破裂,油泵噪声通过岩样传递给传感器,裂缝对噪声的传递产生了影响,导致高频噪声大大减弱,而低频噪声则相对增强。

图13 361.335~362.871s主破裂发生后的噪声谱

1.2.3 微破裂频谱变化特征

分析压机对岩样进行加压的实验过程,通过频谱的变化特征可以看出:四批微破裂产生时频谱的频率范围以及振幅有所差异(见表1)。

表1 四批微破裂发生时不同传感器接收的频率范围及频谱峰值

四批破裂发生时,频率范围并不仅仅集中在表1所列的范围之内,另外还有相对集中的区域,但是由于其他区域的频率或者峰值较低,或者范围很窄,因此没有一一列举,表中只列举了主要的频率范围。由表中数据可以看出,对于一个传感器来说,随着压力的增大,四次破裂发生时的频率范围依次减小,即频率随着破裂的增大逐渐降低;对于同一次微破裂来说,前两批微破裂产生时距离压力作用点近的两个传感器得到的数据相对于较远的传感器来说要小,而主破裂发生时只有4号传感器的频率范围明显大于其他3个,说明距离裂缝越近,频率值越低。从这个现象我们可以总结以下规律:随着压力的增大,频率值降低;裂缝越大,频率值越小。而且,由于岩样本身体积比较小,在放置的时候由于位置不足够精确,因此一点儿的差距都会导致岩样在受压过程中发生轻微倾斜,这种轻微倾斜将导致处于对称位置的1、4号检波器和2、3号检波器的数据存在较大差异。从每次破裂频谱的峰值来看,前两次破裂发生时靠近压力作用点的传感器发出的频谱的峰值要大,而后两次破裂发生时情况正好相反。这有可能是由于最先两次破裂发生时微破裂的规模很小,只是内部结构发生了微小变化,而后两次发生时微破裂的规模相对增大,第四批微破裂甚至使岩样在宏观上发生了破裂的缘故。

1.3 实验结果讨论

近年来,地震学者认识到,地震是一次具有裂隙的地球材料的破裂行为,并在一般的固体材料,其中包括岩石微裂隙形成过程的研究中,去探索这种破裂的孕育及发生。现今关于地震孕育的一切基本假想,都把地球裂隙破裂的演化看成是寻找和解决地震前兆并解决地震预报的关键[2-10]。主破裂的发生是由于岩样在前面破裂以及不断施压的条件下,使得内部裂缝不断聚集增多,最后达到相互贯通的结果,岩样在宏观上产生了一条与压力方向近似平行的裂缝。下面分别从四批微破裂中挑选主要的一次微破裂的数据记录进行详细讨论:

(1)第一批微破裂中主要破裂产生的微地震记录(图14):图中分别反映了4个传感器发出的信号。第一批微破裂是当花岗岩样的耐压强度首先达到极限,内部累积了足够的裂隙并且在主压应力方向首先贯通,从而发生了破裂。

图14 第一批微破裂中主要破裂产生的微地震记录

(2)第二批微破裂中主破裂发生时产生的微地震记录(图15):第二批微破裂是在第一批微破裂的基础上发育的,破裂的频率主要集中在低频区。并且红色和黄色的频谱的频率要高于黑色和蓝色频谱的频率,从而可以看出靠近裂缝放置的传感器频率较低。即越靠近震源频率越低。

图15 第二批微破裂中主破裂发生时产生的微地震记录

(3)第三批微破裂中主破裂产生的微地震记录(图16):第三批微破裂是由于继续施加压力岩样内部裂缝继续发育,强度相比较第二批而言要强得多,频率范围也具有向低频区转移的趋势,这可以看作是地震发生前比较重要的一次微破裂。

图16 第三批微破裂中主破裂产生的微地震记录

(4)第四批微破裂中主破裂产生的微地震记录(图17):第四批微破裂是岩样受压的主破裂,也是最终发生的破裂,这次破裂是由于随着压力的不断增大(最终压力达到10.4 kN),岩样内部裂隙不断发育,并高度集中贯通,从而导致岩样宏观上的裂缝产生,集中的应力完全释放。如果将此应用于地震预测,这时的裂缝产生就可以定义为地震的发生。并且距离震源近的传感器得到的频谱的频率较低。

图17 第四批微破裂中主破裂产生的微地震记录

岩体内大多存在着节理、劈理等裂隙,有的还存在着断裂等较大型的薄弱结构。在压力增大到一定程度之后,这些裂隙就会集中发生产生破裂。花岗岩的破裂模式可以归纳为雪崩式不稳定裂隙形成模式,该模式也叫苏联科学院大地物理研究所模式。这个模式的基础是两个现象:裂隙应力场的相互作用和裂隙形成作用的局部集中。在缓慢变化载荷的长期作用下,任何材料,包括岩石,在破坏前都必将产生这两种现象。关于长期强度的学说是基于下列事实:在“亚临界”(小于材料的瞬时强度)应力的缓慢作用下,裂隙的数目和大小逐渐发展。当裂隙密度达到一个临界密度状态值后,材料就过渡到快速宏观破裂阶段。如果裂隙在介质中的分布从统计角度看是均匀的,那么在缓慢增强的载荷作用下,或在活跃介质的影响下,裂隙的数目和大小将逐渐增大,而其中排列的较有利的一些裂隙将互相贯通,形成较大的裂隙。如果把格里菲斯理论及由此引申出来的一些理论用于地震震源,认为在雪崩式裂隙形成过程中逐渐产生一些少量的长裂隙,这些长裂隙串通汇合就导致了岩石的宏观破裂(地震)[11]

2 在煤矿瓦斯灾害预测中的应用

煤炭开采诱发地震(采矿业称为冲击地压)是采矿诱发的动力地质灾害之一。矿震是在采矿活动和区域应力场作用影响下,使采区及周围应力处于不稳定状态,采区局部积累的一定能量以冲击或重力方式释放而产生的岩体振动。据不完全统计,20世纪80年代以来东北地区的辽宁北票、吉林辽源、黑龙江鹤岗、双鸭山汉鸟西、七台河等煤矿的矿山地震水平逐渐增强,部分矿震造成的损失相当严重。引起各级地震、煤炭系统和研究人员的关注。矿震的发生除入为开采因素外,矿山所处构造环境和区域构造应力场状况与其有密切关系[12]

煤炭开采使得井下应力分布随开采深度加大变化加剧,在区域构造活动的共同影响下,构造应力使新、老构造作不同程度的继承性和新生性活动。一些井下断裂构造从稳定状态逐渐活动或蠕动,被牵动产生局部活化,是矿震发生的内在动力环境[13]

地震是由于地下岩体受到应力作用产生形变,在岩体中引起破裂、相对位移、滑动、产生断层并辐射地震波。矿震发生地点是矿区的地下岩体振动,地震记录许多地方与天然地震记录相似。矿震的震源深度浅,在较大范围内可近似为表面震源的随机波动。

在区域构造作用力下,煤层气会沿一些特定方向产出和聚集。当生成的煤层气在矿井局部地区溢出并积聚时,倘若矿井局部温度达到煤层气燃点,就可能引起爆炸。煤矿瓦斯爆炸与地震活动在时间上具有同步性[14-15]。因此准确预测地震活动的发生对预防煤矿瓦斯爆炸具有重要的作用。

基于上述实验得出的结论,以及地震活动与煤矿瓦斯爆炸的关系,可以将MEMS1221 L型单分量加速度传感器用来预测由于入为采矿及天然地震引发的矿震及裂缝。从而减少由于煤矿瓦斯爆炸带来的灾害。

我们将传感器分别放置在煤矿的不同位置,并同时将传感器连接到计算机观测分析系统上来记录不同时刻传感器发出的信号,根据我们上述实验的过程,在不断的采矿过程中,机器对矿体会产生较大的作用力,当矿体内部岩石结构发生变化时,传感器就会发生明显的变化,我们看到记录的频谱信号就会发生突变。产生两三次这样的突变之后,矿体就极有可能有坍塌的可能,因此,在第一次突变时,我们就应该加强防范,采取相应的措施来阻止破裂的发生。

同样,当地下发生地震时我们也可以根据这个原理进行预防,绝大多数地震学家认为,在地震发生前有一个应力在震源区集中的过程,称作孕震过程或地震准备过程。当这一过程发展到一定阶段时,孕震区内的岩石可能会出现微破裂或塑性化等现象,从而导致地震波的频谱发生变化。此外,孕震区内小震震源动力学参数的变化也可能引起地震波频谱的某些变化。这些就是根据地震波频谱异常来进行预报研究的物理依据。在主破裂发生之前往往发生一系列的振幅较小、频率偏低的地震波,这些地震波的产生我们可以将它们视为前驱地震波。本次实验中主破裂发生之前的三次微破裂产生的地震波就可以看作是前驱地震波。这些地震波的发生是主地震波的能量的积蓄,当能量积累到一定程度势必发生地震。

3 结论

(1)花岗岩在单轴压力的作用下产生相对集中的四批脆性破裂,并且这四批破裂的强度具有随着压力的增大逐渐增强的趋势;微破裂发生时,频率具有向低频区偏移的趋势,并且裂缝越大频率越低;

(2)主破裂发生之前的三批微破裂是岩样内部裂缝逐渐集中并相互贯通的结果,可以看作是地震发生前的前兆。主破裂的发生在宏观上产生裂缝,这时可以看作地震的发生;

(3)压裂实验的近源观测记录表明,MEMS技术应用于监测裂缝具有很高的灵敏度,因此将该技术应用于煤矿灾害的预测将会取得好的效果,从而减少由于入为采矿及天然地震引发的矿难。

致谢:感谢东营感微科技开发公司提供的技术支持,以及中国石油大学(华东)机电学院实验室提供的压机设备。在论文的完成过程中,得到了师兄弟的帮助,在此一并表示感谢。

参考文献

[1]Claerbout,J.F..1968.Synthesis of a layered medium from its acoustic transmission response:Geophysics,33,264~269

[2]Daneshvar,M.R.,Clay,C.S.,and Savage,M.K..1995.Passive seismic imaging using micro earthquakes,Geophysics,60,1178~1186

[3]M.Reza Daneshvar,Passive seismic imaging using microearthquakes,Geophysics,60(4)

[4]Deyan Draganov.2004.Passive seismic imaging in the presence of white noise sources,The leading edge,September

[5]张山,刘清林,赵群等.2002.微地震监测技术在油田开发中的应用,石油物探,41(2),226~231

[6]Andy Jupe等著,田增福译.1999.微地震监测:对油藏的听与看,石油物探译丛,5,17~20

[7]刘建中,王春耘等.2004.用微地震法监测油田生产动态,石油勘探与开发,31(2),71~73

[8]Andy Jupe等著,李彦兰译.1999.微地震监控储层,天然气勘探与开发,44~48

[9]Jupe A.,Cowles J.,Jones R..1998.Microseismic monitoring:listen and see the reservoir,World Oil,219(12):171~174

[10]董世泰,高红霞.2004.微地震监测技术及其在油田开发中的应用,石油仪器,18(5),5~8

[11]冯德益,陈化然,丁伟国.1994.大震前地震波频谱异常特征的研究,地震研究,17(4),319~329

[12]张凤鸣,余中元,许晓艳等.2005.鹤岗煤矿开采诱发地震研究,自然灾害学报,14(1),139~143

[13]郑文涛,汪涌,王璐.2004.煤矿瓦斯灾害中地震活动因素探讨,中国地质灾害预防治学报,15(4),54~59

[14]杨建成.1996.王家山煤矿地裂缝的形成及其灾害,甘肃地质学报,5(2),91~95

[15]张刚艳,张华兴,岳国柱.2003.煤层开采裂缝的观测与分析,岩土力学,24(增刊),414~417

  • 官方服务
    • 官方网站

9、要交开题报告了,急求基于单片机便携AT89C52瓦斯报警器参考文献

可以参考一下一些单片机的书籍,实际上就一个逻辑控制并不涉及太多的算法。单片机只要能检测到瓦斯传感器的信号,可根据其信号状态变换来判断是否报警,若想再显示瓦斯的浓度值的话估计就得用到A/D转换了。就看你的瓦斯传感器是那种类型的,输出时模拟信号还是数字信号。本回答由提问者推荐



瓦斯 煤层 钻孔 传感器 发生 灾害 煤矿

上一篇:北京的物流论文参考文献与物流专业论文参考文献
下一篇:写论文什么时候插参考文献与本科论文的参考文献怎么插