日常生活当中很多事情都与化学密切相关,根据相关的化学知识,可以轻松地去解决一系列问题,使我们的生活多姿多彩。 一、每日相伴的化学品——食盐、碘化合物 我们知道食盐的主要成分就是氯化钠,这是人们生活中最常用的一种调味品。但是它的作用绝不仅仅是增加食物的味道,它是人体组织的一种基本成分,对保证人体内正常的生理、生化活动和功能起着重要作用。Na+和Cl-在人体内的作用是与K+等元素相互联系在一起的,错综复杂。其最主要的作用是控制细胞、组织液和血液内的电解质平衡,以保持人体液的正常流通和控制人体内的酸碱平衡。Na+与K+、Ca2+、Mg2+还有助于保持神经和肌肉的适当应激水平;NaCl和KCl对调节血液的适当粘度或稠度起着作用;胃里开始消化某些食物的酸和其他胃液、胰液及胆汁里的助消化的化合物,也是由血液里的钠盐和钾盐形成的。此外,适当浓度的Na+、K+和Cl-对于视网膜对光反应的生理过程也起着重要作用。此外,常用淡盐水漱口,不仅对咽喉疼痛、牙龈肿疼等口腔疾病有治疗和预防作用,还具有预防感冒的作用。 碘化钾、碘化钠、碘酸盐等含碘化合物,在实验室中是重要试剂;在食品和医疗上,它们又是重要的养分和药剂,对于维护人体健康起着重要的作用。碘是人体内的一种必需微量元素,是甲状腺激素的重要组成成分。正常人体内共含碘15mg~20mg,其中70%~80%浓集在甲状腺内。人体内的碘以化合物的形式存在,其主要生理作用通过形成甲状腺激素而发生。因此,甲状腺激素所具有的生理作用和重要机能,均与碘有着直接关系。人体缺乏碘可导致一系列生化紊乱及生理功能异常,如引起地方性甲状腺肿,导致婴、幼儿生长发育停滞、智力低下等。我国是世界上严重缺碘的地区,全国约有四亿人缺碘。政府也采取了一些措施,如提供含碘(碘的化合物)食盐和其他食品(如高碘蛋),井水加碘,食用含碘丰富的海产品等,其中以含碘食盐最为方便有效。1991年3月我国政府向国际社会做出庄严承诺:2000年在中国大陆消除碘缺乏病。 二、人生五味子之一——醋(酸) 醋的化学名字叫乙酸,分子式为CH3COOH。醋不仅是一种调味品,而且还有很多用途: 1.在烹调蔬菜时,放点醋不但味道鲜美,而且有保护蔬菜中维生素C的作用(因维生素C在酸性环境中不易被破坏)。 2.在煮排骨、鸡、鱼时,如果加一点醋,可以使骨中的钙质和磷质被大量溶解在汤中,从而大大提高了人体对钙、磷的吸收率。 3.患有低酸性胃病(胃酸分泌过少,如萎缩性胃炎)的人,如果经常用少量的醋作调味品,既可增进食欲,又可使疾病得到治疗。 4.在鱼类不新鲜的情况下,加醋烹饪不仅可以解除腥味,而且可以杀灭细菌。 5.醋可以作为预防痢疾的良药。痢疾病菌一遇上醋就一命呜呼,所以在夏季痢疾流行的季节,多吃点醋,可以增加肠胃内杀灭痢疾病菌的作用。 6.醋还可以预防流行性感冒。将室内门窗关严,将醋倒在锅里漫火煮沸至干,便可以起到消灭病菌的作用。 7.用醋浸泡暖水瓶中的水垢,可以达到除垢的目的。 8.夏天毛巾易发生霉变而出异味,用少量的醋洗毛巾就可以消除异味。 三、自愿吸食的毒药——香烟 从化学角度介绍一下香烟点燃后产生对人体有害的物质大致分为六大类: 1.醛类、氮化物、烯烃类,这些物质对呼吸道有刺激作用。 2.尼古丁类,可刺激交感神经,引起血管内膜损害。 3.胺类、氰化物和重金属,这些均属毒性物质。 4.苯丙芘、砷、镉、甲基肼、氨基酚、其他放射性物质,这些物质均有致癌作用。 5.酚类化合物和甲醛等,这些物质具有加速癌变的作用。 6.一氧化碳能减低红血球将氧输送到全身的能力。 最近有学者研究表明,烟雾中还含有迄今为止已知物质中毒性最强的化合物“二恶英”。它们会引发和恶化各种疾病,例如,癌症、肺炎、气管炎、高血压、骨质增生、各种心脑血管病、哮喘以及不育等病症。根据世界卫生组织提供的资料,全世界每年约有1000万人死于与吸烟有关的疾病。青少年正处于生长发育时期,呼吸道粘膜容易受损,吸烟的危害性更大。据调查,小于15岁开始吸烟的人,比不吸烟的人肺癌发病率高17倍。所以,我国中小学生守则规定学生不准吸烟。 四、生活中的常识 1.除去衣服上的汗渍 方法一:将有汗渍的衣服在10%的食盐水中浸泡一会,然后再用肥皂洗涤。 方法二:在适量的水中加入少量的碳胺[(NH4)2CO3]和少量的食用碱[Na2CO3或NaHCO3],搅拌溶解后,将有汗渍的衣服放在里面浸泡一会,然后反复揉搓。 2.除去衣服上的血渍血渍因血液里含有蛋白质,蛋白质遇热则不易溶解,因此洗血渍不能用热水。 方法一:将有血渍的部位用双氧水或者漂白粉水浸泡一会,然后搓洗。 方法二:将萝卜切碎,撒上食盐搅拌均匀,十分钟之后挤出萝卜汁,将有血渍的部位用萝卜汁浸泡一会,然后搓洗。 上述生活中的例子举不胜举,总之,生活中处处有化学。今后,让我们继续为“高中的化学理论在生活中的应用”累积知识。更多追问追答追问
这是论文么,,我不太懂,麻烦解释下。追答
你要做什么用吧,我觉得2000字的论文这样就可以了追问
学校做研究性学习的材料,完了就是写这论文。还有这篇够字数么。追答
字数没问题,这个你还要加点自己的东西,整体框架也要自己设计一下。这样就可以了
使大气中的氧和二氧化碳的含量相对稳定,使动物和人类正常呼吸、生存。植物的光合作用是指植物利用光能,以水和二氧化碳为原料,合成碳水化合物,再加工转化成淀粉、糖、脂肪、蛋白质、纤维素、维生素等,并分解出大量的氧气。这些物质是人和动物赖以生存的基础。人类的衣食住行都离不开植物的光合作用,即使像原料、燃料,如煤、石油、天然气等,都是几百万年以前的水生和陆生动植物遗体的分解物,而这些水生和陆生动植物在当时之所以能生存,无不归功于当时植物的光合作用。不难想像,如果没有植物的光合作用,人类就不会有生活的物质来源,人类也就无法生存。光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。 光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。 暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。 光合作用的重要意义 光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。光合作用的意义可以概括为以下几个方面; 第一,制造有机物。绿色植物通过光合作用制造有机物的数量是非常巨大的。据估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球上每年工业产品的总产量。所以,人们把地球上的绿色植物比作庞大的“绿色工厂”。绿色植物的生存离不开自身通过光合作用制造的有机物。人类和动物的食物也都直接或间接地来自光合作用制造的有机物。 第二,转化并储存太阳能。绿色植物通过光合作用将太阳能转化成化学能,并储存在光合作用制造的有机物中。地球上几乎所有的生物,都是直接或间接利用这些能量作为生命活动的能源的。煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的。 第三,使大气中的氧和二氧化碳的含量相对稳定。据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒)。以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完。然而,这种情况并没有发生。这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定。 第四,对生物的进化具有重要的作用。在绿色植物出现以前,地球的大气中并没有氧。只是在距今20亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势以后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展。由于大气中的一部分氧转化成臭氧(O3)。臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物开始逐渐能够在陆地上生活。经过长期的生物进化过程,最后才出现广泛分布在自然界的各种动植物。植物的光合作用能固定太阳能,产生葡萄糖,因此植物是属于生产者,光合作用固定下来的物质和能量随着生物链逐级递减地传给下一级的消费者,能够直接或间接地为人类和其他动物提供物质和能量。 光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源.制造了有机物,人类和动物的食物也都直接或间接地来自光合作用制造的有机物。在网上有很多关于植物光合作用与人的关系的资料,多下一点,整理一下就成了你的文章,不过,这样的文章不能用来发表,交作业是可以的。才十分,会写都不帮你写哦。。。。。1000字就能算到论文了啊?这个倒是蛮方便的自己多收集些资料,多抄点,1000字不就搞定了嘛…
植物光合作用的多样性 光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。 1.光合作用的多种途径</B> 据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。 研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者M.calvin而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。 光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。 此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。 2.不同光合途径的判定</B> 叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。 δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即: 从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。 实验证明,在25℃和pH8.5条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和pH8.2条件下,RuBP羧化酶的δ13C(‰)是-33.1%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,pH8.2)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(-18.3‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。 应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。 从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。 3 光合作用多样性与植物系统演化的关系</B> 在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。 植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。 单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。 4 结束语</B> 据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。
关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660年出版的他所著的书中涉及到了他对于光的观点,也认为光也是由大量坚硬粒子组成的。牛顿随后对于伽森荻的这种观点进行研究,他根据光的直线传播规律、光的偏振现象,最终于1675年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说很容易解释光的直进性和反射现象,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。然而微粒说在解释一束光射到两种介质分界面处会同时反射和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。波动说罗伯特·胡克在1685年发表的《显微术》一书中,认为光是一种振动,发光体的每一振动在介质中向各个方向传播。胡克初步建立了波面和波线的概念,并把波面的思想用于对光的折射和薄膜颜色的研究。惠更斯(Christian Huygens)著《论光》更明确地提出了光是一种波动的主张,他认为光是一种介质的运动,该运动从介质的一部分以有限速度依次地向其他部分传播,他把光的传播方式与声音在空气中的传播作比较。波动说很容易能够解释微粒说不能解释的两个问题。水波可以同时发生反射和折射,并且水波的反射和折射规律和光完全相同。湖面上的激烈水波能够自由的互相穿过,通过一个窗口能够同时听到窗外几个人讲话的声音,这些都是人们熟知的波的现象。然而,早期的波动说缺乏定量的数学严密性,也缺乏对波动特性的足够说明,仍然摆脱不了几何光学的观念。同时,惠更斯所提出的波动说是把光比作像“水波”一样的机械波,即机械波的传播需要依靠介质,而光却能在真空中(即无介质)传播。牛顿并不是在根本上否认光的波动性,事实上正是牛顿首先提出了光在本质上是一种周期过程的观点,他还多次提到光可能是一种振动并与声波作对比。然而从他的著作《光学》的其他部分来看,他还是倾向于光的微粒说。突出的例子是从光的微粒说出发,根据机械粒子遵守的力学规律来解释光的反射定律和折射定律,并得出了光密介质中的光速要大于光疏介质中的光速这一与事实不符的结论。英国物理学家托马斯·杨(1773年 – 1829年)用干涉实验证明了光的波动性由于牛顿在学术界有很高的声望,致使微粒说在其后的100多年里一直占着主导地位,而波动说却发展得很慢。同时,如果要证明光具有波动性,必须设法显示出光具有干涉现象,而干涉现象的产生必须得到两列相干光,然而要得到两列相干光在当时是很困难的。直到1801年英国物理学家托马斯·杨(Thomas Young)终于用干涉实验证明了光的波动性。详见杨氏双缝干涉实验电磁说到19世纪中期,光的波动性已经得到公认,然而当时人们只了解在介质中传播的机械波,认为光波也是一种机械波。而任何机械波的传播都依靠介质,光却能在真空中传播。从太阳和其他恒星所发出的光,是通过什么介质传播过来的呢?为了说明光传播的这个问题,人们便假设在宇宙空间中到处充满着一种特殊的物质,这种物质被称作以太,光便是通过“以太”来进行传播。为了解释光波的各种性质,对于“以太”这个概念又进一步提出了种种假设。譬如,“以太”的密度极小,却具有较大的弹性等。由于对“以太”性质种种假设间存在明显的矛盾,人们很难相信存在这种物质。而为证明“以太”存在的各种实验也都以失败而告终。1846年,法拉第发现在磁场的作用下,偏振光的振动面会发生改变。这一重要的发现,表明光和电磁现象间存在着某种联系,同时将人们的目光转移到了电磁现象来考虑。19世纪60年代,麦克斯韦在研究电磁场理论时预见了电磁波的存在。同时指出电磁波是一种横波,电磁波的传播速度等于光速。麦克斯韦通过电磁波与光波的相似性质,提出假设,认为光波是一种电磁波。20多年后,赫兹用实验证实了电磁波的存在,测得电磁波的传播速度的确与光速相同,同时电磁波也能够产生反射、折射、干涉、衍射、偏振等现象,从实验中证明了光是一种电磁波。光子说光的电磁说使光的波动理论发展到相当完美的地步。但是,还是在赫兹用实验证实光的电磁说的时候,就已经发现了光电效应这一现象,而这一发现也使光的电磁说遇到了无法克服的困难。1905年爱因斯坦提出光量子论,运用光子的概念解释了光电效应。
有机磷农药残留快速检测方法探究进展【字号 大 中 小】 发布时间:2008年11月18日 打印本页 -------------------------------------------------------------------------------- 有机磷农药残留快速检测方法探究进展()关键词:有机磷农药最初农药残留检测技术仅限于化学法论文 比色法和生物测定法论文 检测方法缺乏专一性论文 灵敏度也不高。20世纪60年代气相色谱应用于农药和药物残留分析论文 大大提高了农药和药物残留? 摘要:关键词 有机磷农药 最初农药残留检测技术仅限于化学法、比色法和生物测定法,检测方法缺乏专一性,灵敏度也不高。20世纪60年代气相色谱运用于农药和药物残留探析,大大提高了农药和药物残留量的检测水平。20世纪80年代以来,高效液相色谱法开始广泛运用于对热不稳定和离子型农药及其代谢物的探析。色谱法虽然定量准确、灵敏度高,但所需设备昂贵,需要专业人员操作,且探析时间长不利于现场监测。本文就当前农药和药物残留快速检测探析技术探究进展做一综述。 1 发光菌检测技术 探究表明,不同种类的发光细菌的发光机制相同〔1〕。即由分子氧功效,胞内荧光酶催化,将还原态的黄素核甘酸(FMNH2)及长链脂肪醛氧化为FMN及长链脂肪酸,同时释放出最大发光强度在波长450~490nm的蓝绿光。常用的发光菌有弧菌属和发光杆菌属的一些细菌。袁东星〔2〕等人采用发光细菌快速检测蔬菜中有机磷农药的残留量,通过发光菌对蔬菜中几种有机磷农药的抑光反应,得出发光强度和试样中有机磷农药浓度呈负相关的结果,其最小检测限可达到3mg/L。目前,发光菌检测技术广泛地运用于环境监测及食品平安检测中,其在食品平安检测中主要用于农药兽药残留检测、重金属生物毒性检测等〔3〕,方法快速、简便、灵敏。但是发光菌被激活后,它的发光强度会随时间的变化而改变,造成检测结果不稳定。此外,由于食品中成分复杂,污染物浓度较低,检测仪器达不到如此低的检测限,所以该法在食品平安检测中的运用还不多见。 2 化学发光技术 化学发光(CL)是以发光物质鲁米诺(Luminol)、没食子酸(Gallicacid)等和有机磷农药进行的一些非凡的化学反应,反应的中间体或反应物吸收反应所释放出的化学能而跃迁到激发态,当它们从激发态回到基态时会发生光辐射,光子通过光电倍增管和放大器后,转变为电流且被放大,在一定条件下电流大小和有机磷浓度成正比〔4〕。根据反应原理有以下4种检测方法:(1)对乙酰胆碱酶抑制的CL方法;(2)对碱性磷酸酯酶的催化CL方法;(3)对于过氧化物和吲哚反应的方法;(4)对于鲁米诺和过氧化氢(H2O2)反应的方法。采用化学发光法检测有机磷农药,其检测限可达到ng/kg级水平。Ayyagari〔5〕根据碱性磷酸酯酶可以催化含磷酸酯化合物发生去磷酸化功效,即乐果抑制磷酸酯酶的活性,并产生微弱的发光信号检测乐果,检测限为500ng/L。饶志明〔6〕等人以鲁米诺-H2O2体系对有机磷农药-甲基对硫磷进行化学发光探析,发现聚乙二醇对反应有显著的增敏功效,并建立了流动注射化学发光法(FIA-CL)测定甲基对硫磷的方法,检测限可达002μg/ml。目前探究较多的是化学发光和免疫探析、分子印迹、微流控芯片等技术联用检测食品中农药兽药的残留〔7〕,但仍处于实验室阶段,实际运用还很少。化学发光技术具有灵敏度高,反应速度快,选择性好,仪器设备简单等优点,更适合现场监测工作的开展。 3 免疫探析技术 运用于农药残留探析的免疫探析技术主要有放射性免疫探析(RIA)和酶联免疫探析(EIA)。由于RIA在仪器设备要求上的局限性,使得EIA成为农药残留探析中运用最为广泛的技术之一。EIA在实际运用中有直接法、间接法、抗体夹心法、竞争法、抑制法等。免疫探析是根据抗原抗体特异性识别和结合反应为基础的探析方法。有机磷农药是小分子量农药(MW%26lt;2500),要将农药小分子以半抗原的形式通过一定碳链长度的连接分子和分子量大的载体(一般为蛋白质)以共价键相偶联制备人工抗原,以人工抗原免疫动物产生对该农药具有特异性反应的抗体(多克隆抗体),利用杂交瘤技术制备出具有抗原特异性单一的抗体(单克隆抗体)。M A Kumar〔8〕等采用酶联免疫探析技术和流动注射技术结合检测环境和食品中的甲基对硫磷,其灵敏度高、特异性好。我国1999年刘曙照〔9〕等研制出甲萘威酶免探析线性浓度范围在10-1~10-4μg/ml,检测限低于001ng/ml。王刚垛〔10〕等人合成甲基对硫磷人工抗原并建立ELISA探析方法,其检测限达到5ng/ml。目前免疫探析技术主要以食品、环境中的农药、兽药残留作为检测对象,据报道,已有上百种农药建立起ELISA检测方法,如多菌灵、克百威、对氧磷、对硫磷、甲基对硫磷等。某些有机磷农药的检测限可达到ng甚至pg级,一些试剂盒已经商品化,广泛用于现场样品和大量样品的快速监测〔11,12〕。至今为止由于它有很强的特异性,1种试剂盒只能检测单一有机磷农药不能检测农药的多残留,并且对结构类似的化合物还有一定程度的交叉,再加上抗体制备难度大,试剂盒的成本高,这就限制了其在农残检测中的广泛运用。 4 生物传感器技术 生物传感器通常是指由一种生物敏感部件和转换器紧密配合,对特定种类化合物或生物活性物质具有选择和可逆响应的探析工具〔13-16〕。当待测物和分子识别元件(由具有识别能力的生物功效物质如酶、微生物、抗原和抗体等构成)特异性地结合后,产生的光、热等通过信号转换器转变为可以输出的电信号、光信号等,由检测器经过电子技术处理,在仪器上显示或记录下来,从而达到探析检测的目的。 41 酶生物传感器 有机磷农药和乙酰胆碱酶酯基的活性部位发生不可逆的键合从而抑制酶活性,酶反应产生的pH值变化由电位型生物传感器检测。其优点是快速、准确、可重复使用,但是酶对底物具有高度专一性且稳定性较差。Bernabeil M在一个生物传感器上偶联几种酶促反应从而增加了待测物的数目,即用乙酰胆碱酶和胆碱氧化酶双酶系统,制备了检测对氧磷和涕灭威的电流型H2O2传感器。 42 免疫生物传感器 利用抗体和抗原之间的免疫化学反应来制作的生物传感器。可以高灵敏度、高选择性、方便、快速地检测待测样品中的农药残留量。Wan〔17〕等人研制了便携式的光纤免疫传感器检测甲基对硫磷,其最小检测限为01ng/ml。Anis等研制开发的光纤免疫生物传感器用于测定样品中的对硫磷和色谱法相比,该法简便快速,探析周期缩短了4/5。 43 微生物传感器 利用活微生物的代谢功效检测污染物,一类是利用微生物在同化底物时消耗氧的呼吸功效;另一类是利用不同微生物含有不同的酶,把它作为酶源。具有能够适应宽范围的pH和温度的优点,但选择性较差。Mulchandani等人将携带有机磷水解酶(OPH)基因片断的质粒转入一种摩拉氏菌的菌体内,筛选得到可在胞外表达OPH的改良菌,从而制备的传感器对甲基对硫磷和对氧磷的检测限可低达l×10-6mol/L和2×10-7mol/L〔18〕。生物传感器已在环境监测、食品、医药等领域得到广泛运用。在有机磷的检测和其他探析技术相比,生物传感器具有体积小、成本低、选择性及抗干扰能力强、响应快等优点,也可同时检测多个样品,灵敏度高。但目前生物传感器技术还存在稳定性差,使用寿命短等新问题。< 5 展望 目前农药残留检测:发光菌技术主要运用于水质检测及环境规划,随着技术的发展发光菌法将和电子技术以及光电技术相结合,逐步发展为在线监测系统,为有机磷农药现场监测提供更加快速的检测探析手段。化学发光是近年来发展起来的一种高灵敏的微量及痕量有机磷残留检测探析技术,今后在改进和健全原有发光试剂和体系的同时,新发光试剂的合成及和其他技术(如微流控芯片技术、传感器技术等)的联用,更显示出化学发光探析技术快速、灵敏、简便的优点。ELISA技术和生物传感器技术目前还处于起步阶段,随着探析技术的不断改进,ELISA减少交叉反应的发生,进一步提高灵敏度及稳定性,免疫试剂盒不断的商业化;生物传感器的多功效化(1个传感器可检测多种农药残留),降低产品成本,提高灵敏度、稳定性和延长寿命,它们在农药残留检测领域中会得到进一步的运用和推广,使我国的农药残留快速检测技术的运用出现多元化的局面。 参考文献 〔1〕 Thomtdka KW.Use of bioluminesecent bacterium photobacterium phosphoreum to detect potentially biohazardous materials in water〔J〕.Bull Environ Contam Toxicol,1993,51(4):538. 〔2〕 袁东星,邓永智,林玉晖.蔬菜中有机磷农药残留的发光菌快速检测〔J〕.环境化学,1997,16(1):77-81. 〔3〕 凌云,赵渝.发光细菌法在食品平安性检测中的运用〔J〕.食品和生物技术学报,2005,24(6):106-110. 〔4〕 韩鹤友,游子涵.化学发光联用技术在兽药残留探析中的运用进展〔J〕.探析科学学报,2005,21(5):552-556. 〔5〕 Ayyagari MS,Kamtrkar S,Pande R,et al.Biosenors for pesticide detection based on alkaline phosphates catalyzed chemiluminescence〔J〕.Materials Science and Engineering,1995,C2:191-196. 〔6〕 饶志明,王建宁,李隆弟.流动注射化学发光测定甲基对硫磷的探究〔J〕.探析化学,2001,4:1-5. 〔7〕 黄梓平,王建宁.利用化学发光技术对有机磷农药进行检测探析〔J〕.青海师范大学学报:自然科学版,2003,(1):59-63. 〔8〕 Kumar M A,Chuhan R S,Thakur M S,et al.Automated flow enzyme-linked immunosorbent assay(ELISA)system for analysis of methyl parathion〔J〕.Analytica Chimica Acta,2006,(560):30-34. 〔9〕 刘曙照.九十年代农药残留探析新技术〔J〕.农药,1998,37(6):11-13. 〔10〕 王刚垛,何凤生,鱼涛,等.甲基对硫磷ELISA探析方法的建立及初步运用〔J〕.中国工业医学杂志,2001,14(6):327-333. 〔11〕 赵人王争,陈景衡,杨俊.生物酶技术和酶免疫技术在农残快速探析方面的运用和探究进展〔J〕.中国卫生检验杂志,2002,12(5):640-641. 〔12〕 韩丽君,贾明宏,钱传范,等.甲基对硫磷的酶联免疫吸附探析(ELISA)探究〔J〕.农业环境学学报,2005,24:187-190. 〔13〕 Nunes GS,Barcelo D.Electrochemicalbiosensors for pesticide determination in food samples〔J〕.Pesticide Analysis,1998,26:156-159. 〔14〕 刘宗林,彭义交.有机磷传感器的研制〔J〕.食品科学,2004,25(2):130-134. 〔15〕 乌日娜,李建科.生物传感器在农药残留探析中的探究目前现状及展望〔J〕.食品和机械,2005,21(2):54-76. 〔16〕 陈帆,何奕.有机磷水解酶传感器及其运用探究进展〔J〕.传感器技术,2004,23(4):5-9. 〔17〕 Wan Lixing,Li Renma.Portable fiber-optic immunosensor for detection of methsulfuron methyl〔J〕.Talanta,2000,(52):879-883. 〔18〕 Mulchandani P,Chen W,Mulchandani A,et a1.Amperometricmicrobial biosensor for direct determination of organophosphate epesticides using recombinant microorganism with surface expressedorganophosphorus hydrolase〔J〕.Biosensors %26amp; Bioelectronics,2001(16):433-437.<
参考资料:/cn/newsshow.asp?id=3419
【摘要】 目的 建立大豆异黄酮苷元含量测定方法。方法 采用HPLC法,Diamonsil C18柱 (250 mm×4.6 mm,5 μm),流动相:甲醇-0.3%磷酸溶液(体积比48∶52),流速0.7 mL/min,测定波长260 nm,柱温25 ℃。结果 制备的大豆异黄酮苷元总含量为70.98%;大豆苷元、黄豆黄素和染料木素平均回收率分别为98.7%、98.9%和99.2%,RSD分别为2.1%、1.6%和1.4%。结论 所建立的测定方法重现性好、可靠,可用于3种大豆异黄酮苷元的含量测定。 【关键词】 大豆异黄酮苷元;高效液相色谱法;含量测定 Abstract:Objective To establish an HPLC method for the content determination of isoflavone aglycones. Methods Isoflavone aglycones were analyzed on a Diamonsil C18 column (250 mm×4.6 mm,5 μm). A mixture of MeOH-0.3%H3PO4(48∶52) was used as the mobile phase with a flow rate of 0.7 mL/min. The detecting wavelength was 260 nm at 25 ℃.Results The content of isoflavone aglycones in the sample was 70.98%.The average recoveries of genistein,daidzein and glycitein were 99.2%,98.7% and 98.9% with RSD 1.4%,2.1% and 1.6%,respectively. Conclusions This method can be used for the quality control of soy isoflavone aglycones. Key words:soy;isoflavone aglycones; HPLC 大豆异黄酮有广泛的生理活性,具有抗氧化、防癌和抗癌、预防骨质疏松症、保护心血管系统和神经保护等作用。有资料表明,在哺乳动物体内,去除糖基配体后形成的大豆黄酮苷元及其代谢产物均是弱雌激素样活性物质,苷元比糖苷更容易被人体吸收〔1,2〕。大豆异黄酮苷元广泛用于保健品、食品和化妆品等,正受到广泛的关注,因此建立一个稳定、准确的含量检测方法有重要的应用价值。 1 仪器与材料 Dionex P680A高效液相色谱仪,数显恒温水浴锅(江苏省宏华仪器厂),旋转蒸发器(上海亚荣仪器厂),SH2-D循环水真空泵(巩义市予华仪器有限责任公司),电子天平(Sartorius)。 染料木素、大豆苷元和黄豆黄素对照品 (购于上海同田生化技术有限公司,纯度均≥99%),脱脂豆粕(购于山西省曲沃县),AB-8大孔树脂(南开大学化工厂),聚酰胺(浙江省台州市路桥四甲生化塑料厂);甲醇(色谱纯,英国TEDIA公司),屈臣氏蒸馏水,其余试剂均为分析纯。 2 方法与结果 2.1 大豆异黄酮苷元的制备 取豆粕适量,用8倍量(g/mL)体积分数为70%的乙醇溶液浸泡30 min,80 ℃水浴回流提取2次,每次90 min;合并提取液,过滤后回收乙醇、浓缩;上AB-8大孔树脂,以体积分数为50%的乙醇溶液洗脱,收集洗脱液,浓缩,45 ℃烘干。适量乙醇溶液溶解,拌样上聚酰胺柱,以体积分数为70%的乙醇溶液洗脱,得粗提浸膏,45 ℃烘干。取一定量的粗提物置于圆底烧瓶中,加入4倍量(g/mL)的7%盐酸-乙醇液,80 ℃水浴水解2 h,浓缩,乙醚萃取,挥干乙醚;用适量体积分数为70%的乙醇溶液溶解,石油醚脱脂,用200~300目硅胶拌匀,自然干燥,上硅胶柱,用三氯甲烷-甲醇(体积比6∶1)洗脱,收集洗脱液,挥去溶剂,得大豆异黄酮苷元混合物〔3,4〕。 2.2 样品溶液的制备 精密称取大豆异黄酮苷元混合物28.50 mg,置50 mL量瓶中,加甲醇超声溶解,定容,精密吸取1.0 mL置10 mL量瓶中,加甲醇至刻度,摇匀,得质量浓度为0.0570 mg/mL的样品溶液。 2.3 对照品溶液的制备 分别精密称定大豆苷元、染料木素对照品13.20 mg、14.60 mg各置50 mL量瓶中,加甲醇超声溶解,定容,得浓度为0.264 0 mg/mL的大豆苷元及0.292 0 mg/mL的染料木素对照品溶液;精密称定黄豆黄素27.75 mg,置50 mL量瓶中,加甲醇超声溶解,定容,精密吸取1.0 mL,至5 mL容量瓶中,加甲醇至刻度,摇匀,得0.111 0 mg/mL的黄豆黄素对照品溶液。4 ℃储存备用。 2.4 色谱条件〔5~6〕 Diamonsil C18柱 (250 mm×4.6 mm,5 μm);柱温25 ℃;流动相:甲醇-0.3%磷酸溶液(体积比48∶52);流速=0.7 mL/min ;测定波长260 nm;进样量:20 μL。 2.5 线性关系 分别精密吸取上述大豆苷元、染料木素、黄豆黄素对照品溶液0. 8、1.5、0.6 mL置100 mL量瓶中,甲醇定容,得混合对照品溶液Ⅰ。同法制备混合对照品溶液Ⅱ-Ⅵ,浓度见表1,混合对照品HPLC色谱图见图1。 表1 混合对照品溶液中大豆苷元、黄豆黄素、染料木素的质量浓度 (略) Tab.1 Contents of genistein,daidzein and glycitein in the control sampleρ/ 按上述色谱条件依法测定,分别以大豆苷元、黄豆黄素和染料木素的浓度(μg/mL)对峰面积作回归计算,得回归方程(n=6)分别为: y=5836.1x+0.8812,r=0.9994; y=1177.4x+0.1372,r=0.9994; y=3256.6x+0.894,r=0.9992。 大豆苷元、黄豆黄素和染料木素分别在2.112~21.12 μg/ mL,0.666 0~6.66 0 μg/mL,4.380~43.80 μg/mL范围内,线性关系良好。 1.大豆苷元 2.黄豆黄素 3.染料木素 图1 对照品HPLC色谱图(略) Fig.1 HPLC chromatogram of reference substance 2.6 精密度试验 取对照品溶液Ⅲ,重复进样6次,记录色谱图,测定峰面积值,计算RSD值,得大豆苷元、黄豆黄素和染料木素的RSD分别为0.59%、 0.62%和0.83%。 2.7 重复性试验 取同一批次大豆异黄酮苷元混合物6份,按“2.2”项下,制备样品溶液,测定峰面积值,计算RSD值,得大豆苷元、黄豆黄素和染料木素的RSD分别为2.0%,1.2%和1.4%。建设社会主义新农村是我国现代化进程中的重大历史任务,是统筹城乡发展和以工促农、以城带乡的具体化,是遏止城乡差距拉大趋势、扩大农村市场需求的根本出路,是解决“三农”问题、全面建设小康社会的重大战略举措。新农村建设是一个庞大的系统工程,涵盖了经济建设、政治建设、文化建设和社会建设。建设新农村,必须坚持统筹城乡发展这个根本指导方针,在符合农民意愿、带给农民实惠、得到农民拥护的基础上扎实稳步地推进。当前,应集中解决农民生产生活中最迫切需要解决的实际问题,真正带给农民实惠。本回答被提问者采纳2008年8月Angewandte Chemie杂志报道了澳大利亚莫纳什大学的利昂·斯皮西亚、罗宾·布里姆布来可比和安妮特·可罗,澳大利亚联邦科学与工业研究组织(CSIRO)的格哈德·斯伟格斯和美国普林斯顿大学的查尔斯·迪斯莫克斯共同开发了由一层涂层和维持植物光合作用的基本化学物质——锰组成的系统。该系统可模拟植物的光合作用,为利用阳光将水分解成氢和氧开辟了一条新途径。此项技术突破有望革新制氢工艺,从而利用太阳光大规模生产清洁的绿色能源——氢气。光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是赖以生存的关键,而在面临能源和环境瓶颈的今天,这一过程中的能量转换也为人类提供了极其重要的启示。由于自然光谱的吸收率等原因,光合作用在多数植物中效率非常低,通常均低于0.5%。在人工设计的系统中,研发人员借鉴其光反应与电子传递的机制,并提高通量转化的效率,使其适于太阳能的转化利用。事实上,在上述模拟光合作用的研究取得突破前,微生物制氢的已经成为了研究热点。自然界已发现有类似甲烷菌的制氢菌,但其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气也会像制造沼气一样得到大规模应用。模拟光合作用制氢或者微生物制氢过程正是仿生学“向自然学习”的思想典型。20世纪40年代以来,工程技术领域中出现了调节理论,人们开始在一般意义上把生物与机器进行类比,认识到二者包含自动调节系统。此后,科学研究和生产实践完全证实了生物和机器在许多问题上的共同之处。而控制论则把生物科学和工程技术从理论上联系起来,成为在原理上沟通生物系统与技术系统的桥梁,奠定了生物与机器在控制与通信方面进行类比的科学理论基础。之后,斯蒂尔提出了仿生学的研究理念。自上个世纪末以来,人们认识到大约35亿年的生命演化与协同进化过程优化了生物体宏观与微观结构,形态与功能具有无可比拟的优越性,仿生学也因此显示出巨大的生命力。从研究模式上看,仿生学作为模仿生物建造技术装置的科学,是一门新兴的边缘科学,研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和设备,创造新技术。模拟光合作用制氢过程的例子很好地诠释了这一点。在植物的光合作用中,锰参与几种酶系统。由于锰可以在正二价和正四价两种化合价之间转换,所以主要在氧化还原和电子转移中发挥作用。这一思想为斯皮西亚等人的研究提供了启发。他们在确定锰簇是植物利用水、二氧化碳和阳光制造碳水化合物和氧气的中心枢纽后,开发出这种人造锰簇,并利用这些分子的能力将水分解成氢和氧。研究者将一层质子导体――Nafion薄膜覆盖在一个电极上,形成一层仅几微米厚的聚合体膜,这层聚合体膜充当锰簇的载体。锰在正常情况下不溶解于水,但可以和Nafion薄膜小孔中的催化剂结合,形成不易分解的稳定结构,当水到达此催化剂时,在阳光的照射下便发生氧化反应。在能源和环境领域,这一技术显示了仿生技术的巨大应用潜力和价值。初步测试表明,此催化剂连续使用3天之后还有活性,由此分解出来的氢气和氧气可以在燃料电池中结合成水,产生电力供住宅和电动车全天24小时使用,且不排放碳而是排放水。虽然此系统的效率还有待提高,但研究者可以不断地从自然界中学习,使之更为高效,从而使氢这一能效高且没有碳排放的绿色清洁能源为未来社会所用。生物体的电子传递过程在能源仿生技术上的另一重点研究领域是生物发光。生物发光和光合作用都是“电子传递”现象,而从某个角度上看,生物发光可以看作是光合作用的逆反应。光合作用是绿色植物吸取环境中的二氧化碳和水分,在叶绿体中,利用太阳光能合成碳水化合物,同时放出氧气。光能从水分子上释放电子,并把电子加到二氧化碳上,产生碳水化合物,这是一个还原过程。光合作用把光能转变成化学能,而生物发光是电子从荧光素分子上脱下来和氧化合,形成水,产生光。生物发光是将化学能转变成光能。生物光作为冷光源,具有效能高、效率大、不发热、不产生其它辐射、不会燃烧、不产生磁场等特点,对于手术室、实验室、易燃物品库房、矿井以及水下作业等,都是一种安全可靠的理想照明光源。通过模仿发光生物把一种形式的能量转换成另一种形式的能量,制造冷光板使其不需要复杂的电路和电力,就能白天吸收太阳光,晚上再将光能释放。人们先是从发光生物中分离出纯荧光素,后来又分离出荧光酶。现在已能人工合成荧光素,这就使人类模仿生物发光,创造一种新的高效光源——冷光源成为可能。然而,人们对于萤火虫等发光机制的研究仍然有待深入。如果将光合作用和生物发光机制在仿生学框架下同时加以研究,就有可能在能量利用的电子传递现象中取得进展,从而实现能源利用更为巨大的进步。从仿生学的诞生、发展,到现在短短几十年的时间内,研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力,在能源技术上的应用潜力也极其巨大,有助于破解人们所面临的能源瓶颈问题,同时解决石化能源等所带来的环境问题。鲨鱼皮肤-泳衣 一件泳衣,在悉尼奥运会上改变了世界泳坛的格局。几乎大半金牌得主都穿上一种特殊的泳衣———连体鲨鱼装。这种鲨鱼装仿造了海中霸王鲨鱼的皮肤结构,泳衣上设计了一些粗糙的齿状凸起,能有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动。 此后,仿生泳衣越仿越精。第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%。此外,还增加了两个附件,附在前臂上由钛硅树脂做成的缓冲器能使运动员游起来更加轻松;附在胸前和肩后的振动控制系统能帮助引导水流。 海蜇-水母耳 每当风暴来临前,最古老的腔肠生物海蜇仿佛能未卜先知,早早就离岸游向大海避灾。原来,海蜇有个“顺风耳”,其“耳”(细柄上的小球)中有小小的听石,上面布满神经感受器,能听到风暴产生时发出的次声波(由空气和波浪摩擦而产生,频率为8赫兹-13赫兹,传播比风暴、波浪的速度快)。 模拟海蜇感受次声波的器官,科技人员设计出一种“水母耳”仪器,可提前15小时左右预报风暴。它由喇叭、接受次声波的共振器和把这种振动转变为电脉冲的转换器以及指示器组成。将这种仪器安装在船的前甲板上,喇叭做360°旋转。当它接收到8赫兹-13赫兹的次声波时,旋转自动停止,喇叭所指示的方向,就是风暴将要来临的方向。指示器还可以告诉人们风暴的强度。 仿生成果走向产业 京沪两地科学界级别最高的“香山科学会议”和“东方科技论坛”最近联合就仿生学召开学术研讨会,此举在科学界引起不小震动:为何给予仿生学如此高规格? 缘自国际科研和高新技术产业的竞争态势。越来越多的科学家认识到:模仿自然更有无限的潜力和机会,更有可能提升原始创新的能力。 人类进化只有500万年的历史,而生命进化已经历了约35亿年。大自然的奥秘不胜枚举。每当我们发现一种生物奥秘,就有可能成为我们一种新的设计可能性,也可能带给我们新的生存方式,仿生思维就是在大自然中寻找解决问题的方程式。10年前,许多国家就开始通过仿生学,提升科技创新活力和产业能级。在美国,有一项长期研究计划与仿生科技紧密相关,其优先发展的先进制造、先进材料和先进军事装备等,不少是从模拟与仿真入手;德国研究与技术部已就“21世纪的技术”为题,从仿生学出发,在电子技术、纳米技术、富勒碳材料、光子学、材料、生物传感器等领域投入了相当大的财力和人力;英国、日本、俄罗斯以及韩国等国都有相应的仿生科技和仿生产业中长期计划,在先进制造、材料、生物技术、高性能计算与通信计划等领域开展基础性研究。 仿生成果已不断涌现,并开始从基础研究发展到商业化竞争阶段。中科院上海生命科学研究院植物生理生态研究所研究员杜家纬介绍,这些仿生学成果应用于经济、军事和人类卫生事业后,在全球经济中所创造的份额会越来越大。如德国轮胎设计专家根据跑行中的猫前爪垫的功能和蜘蛛网的柔顺结构及其稳定性,设计出一种AMC垫型轮胎,其表面的柔软性和硬性网状结构设计,具有较大的抓地性和运行精度,增加了轮胎与地面的摩擦力,使刹车距离从现在的19米缩短为9米,大大提高了安全性。这种轮胎已完成了实地试验,一旦投产,对世界轮胎业产生的冲击可想而知。又如,德国米勒公司新设计的一款洗衣机内桶表面结构仿造蜂巢和龟背壳形状,所洗的衣服非常干净,但洗涤过程却非常柔顺,不伤衣料。据统计,我国每年洗衣机更新量为500万台,有关专家已经担忧,一旦这种仿生洗衣机进入市场,将大大挤压我国的洗衣机市场。 将仿生研究纳入国家战略 机器人、纳米自洁涂料、生物农药……仿生科研在本市和全国其它城市的不少领域已有开展,但始终难以形成规模产业,缘于仿生学缺乏系统的研究规划和研究体系,因此源头创新性研究还远远不够。为此有关专家认为,科研主管部门、科技界和产业界都应转变观念和视角,从模仿国外转变为模仿自然,向大自然汲取科技创新的灵感。 据了解,我国当前优先发展的高技术产业化重点领域共有141个方面,其中将近有30个领域与仿生学相关。例如:光传输系统,生物医学材料及体内植入物和人造器官,生物反应器及分离技术与成套设备,医药新剂型,新型医用精密诊断及治疗仪器,新型材料-纳米材料,膜工程技术,子午线轮胎生产技术及关键设备和原材料,新型传感器,工业机器人及机器人自动化生产线,环境与污染源监测仪器及自动监测系统,高效、安全新农药、兽药及生物防治技术,新型墙体材料等。由此可见,加强仿生科研和仿生成果的转化,将使我国的高新技术产业的质与量都产生飞跃。 杜家纬介绍,21世纪的仿生学,正朝着微观、系统、智能、精细、洁净方向发展,更多地表现为将生物系统构造和生命活动过程融合到技术创新的设计思想中去。当前仿生结构和力学的研究在国际上受到高度关注,研制微型飞行器,机器昆虫和机器鱼等正形成热潮。在新材料研究方面,世界各国也都将目标放在模仿生物界的结构,如海洋壳类构造、蜘蛛丝、植物表面超微结构、动物角趾皮肤等等。 仿生学是多学科的交叉,需要多学科的专家,尤其是生命科学家和工程技术专家的共同关注与参与。专家呼吁:要将仿生学的发展放在国家重要战略地位加以考虑,把握21世纪国际仿生学的发展方向和前沿,加强原始创新研究,从仿生结构与力学,仿生材料与微纳系统,仿生功能器件及控制,分子仿生,神经和信息科学等五大“仿生科学与技术”系统性基础研究方向,建立复杂生物体系的研究与发现体系。在仿生材料,仿生工艺,仿生机械,仿生功能器件,微纳米仿生技术,仿生传感器,基因仿生工程,组织仿生工程,生物膜仿生工程和人工智能等10个前沿领域,加强仿生研究和产业孕育。
光合作用广泛存在于自然界,叶绿体收集太阳光能,将水和二氧化碳转化为有机物(首先是葡萄糖),放出氧气。但这只是最终结果,整个过程一开始是将水和二氧化碳气转化为氧,自由的质子和电子。在光合作用中产生了两个化学反应,叶绿素分子失去两个电子,水分子发生分解。尽管光合作用在各种教科书中都得到了详尽的阐述,但是想人工实现这一过程却绝非易事,主要的问题在于缺少有效地电解水的媒介,在植物中充当这一媒介的是叶绿体。 众所周知,水能够电解成氢和氧,但整个过程毫无意义。为了提高这一性能,化学家们提供了能促使反应在更低电压情况下进行的催化剂。目前只有钌和铂能充当这种媒介,当然这两种金属都很昂贵,除此之外,反应要进行还需要特定的温度条件和气压。 模拟光合作用储存太阳能的技术早在上世纪70年代初就进入了科学家的视线。几十年来,研究人员一直在尝试复制绿色植物分解水的方式。利用化学方式,科学家早已能够完成水的分解反应,但这些化学反应条件非常苛刻,温度很高,溶液具有腐蚀性很强的碱性,而且催化剂需要用到铂等稀有而昂贵的化合物。丹尼尔的设计就像光合作用一样,分解水的反应在室温下就可进行,溶液也没有腐蚀性,更重要的是催化剂非常便宜,可以很容易地得到氢气和氧气。编辑本段人造光合作用-最新进展 据美国“每日科学”网站2009年3月12日报道,美国加州大学伯克利分校的科学家,在这一领域取得了重大突破,找到了可使光合反应顺利进行的特殊催化剂。在此基础上,科学家期望彻底弄清光合作用的奥秘,使人工光合作用能大规模用于生产和生活。 据国外媒体报道,美国麻省理工学院(MIT)的科学家日前在实验室内再现了光合作用的过程,在整个过程中光合作用将水分解成氢和氧,并产生了可供燃烧的氢气和氧气。该实验的意义在于光合作用产生的能量能够被人类利用,这种技术将引发一场太阳能使用革命,并补偿煤炭,石油等不可再生资源的损耗。这两名科学家名叫诺塞拉(Daniel Nocera)和卡南(Matthew Kanan),他们找到了一种简单实惠的方法将水分解成氢气和氧气,这种方法的原理和光合作用差不多,只是将太阳能转化了可燃烧的氢气和氧气。编辑本段人造光合作用-催化物 研究人员已发现,特殊的蛋白质“光合体系Ⅱ”作为催化剂载体,起催化作用的是一种含锰的生化酶。在没有绿色植物这个光合作用载体的情况下,人们期望找到一种人工催化剂以替换“光合体系Ⅱ”。加州大学劳伦斯伯克利国家实验室的研究人员正是找到了高效的催化剂——氧化钴纳米颗粒,实现了高转化率的光解反应,相关论文已发表在德国《应用化学》期刊上。 这个系列实验是在加州大学劳伦斯伯克利国家实验室“太阳神”太阳能研究中心完成的,该研究中心由华裔科学家、诺贝尔奖获得者朱棣文创立。他也是劳伦斯伯克利实验室的主任。主要参加者是研究中心主任海因茨·弗雷和他的博士后、旅美华人学者焦锋(音)。弗雷介绍说,光解反应对催化剂要求极为苛刻,在经过无数次实验后,他们发现氧化钴纳米晶体既高效又快速,反应持久,也容易得到,正好能满足要求。 最开始,他们用毫米级的氧化钴颗粒做实验,效果不理想。后来改用纳米级的氧化钴颗粒,欣喜地发现反应速度大大提高。弗雷表示,使用氧化钴纳米“团簇”(多个纳米束组成的团状结构)做催化剂的反应速度是毫米团簇的1600倍,每个团簇每秒约能裂解1140个水分子,反应功率(指每秒吸收的能量)与地面附近的太阳辐射能相当,约为每平方米1000瓦。编辑本段人造光合作用-前景 虽然找到了理想的催化剂,但研究人员表示,这可能是偶然之中的意外收获,还有很多问题有待解决,解决这些问题将有利于进一步提高催化效率。 研究人员使用较普遍的介孔矽(中间有孔洞的二氧化硅晶体)作为氧化钴载体,通过一种“湿性注入”的技术将纳米束植入其中。最理想的情况是直径约为8纳米、长50纳米的团簇,团簇中的纳米管互相连接,弯曲成直径约35纳米的球体。但当使用其他形状的纳米团簇时,催化效率就又大大降低。弗雷猜测说,纳米团簇的形状可能对催化反应起决定作用。目前,弗雷与焦锋正在进行进一步实验,试图探明其中的机理。 弗雷与焦锋的研究成果无疑给人工光合作用打了一针强心剂。因为在这之前,主要研究重点放在催化反应过程上,高效催化剂一直未能找到。弗雷表示,无论从催化剂的易得性、纳米团簇的稳定性、反应中所加的电压,还是酸碱度、温度方面来说,氧化钴的催化效率已同“光合体系Ⅱ”相当。研究人员的下一个任务是,建立一个切实可行的太阳能能量转换系统,将反应产生的氢气以无污染的方式转化成能量。 尽管取得了重大进展,但研究人员并不认为绿色能源近在眼前。“每日科学”的文章分析说,目前人工光合作用面临着三大难题:如何捕捉太阳能;如何以电子的形式将太阳能转运到反应中心;如何在光合作用的循环过程中补充电子。其中前两个难题已经基本得到了解决,但至今还不知道如何解决第三个难题。要解决这个问题最好的办法就是,彻底弄清光合作用的反应机理。 光合作用的基本过程是在叶绿体内进行的。叶绿体吸收光子,并传导给叶绿素,使它释放出高能电子,用于将二氧化碳还原为糖。叶绿素分子每丢失1个电子,催化核心就会从水分子中抽取1个电子为其补充。这样,经过4轮电子转移,两个水分子转化为1个氧气分子、4个电子和4个氢离子,然后重新开始新一轮的循环。但在人工过程中很难实现电子补充,研究人员希望,在循环过程中将这一难题尽快攻破,到时人类就能像植物一样,将太阳光转化为可以利用的能量。 植物光合作用的多样性 光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。 1.光合作用的多种途径 据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。 研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者M.calvin而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。 光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。 2.不同光合途径的判定 叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。 3 光合作用多样性与植物系统演化的关系 在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。 植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。 4 结束语 据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。 请采纳,谢谢=-=
参考资料:/source/czsw/GHZY/792_SR.asp
本回答被提问者采纳总反应:CO2 + H2018 ——→ (CH2O) + O218注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物。各步分反应:H20→H+ O2(水的光解)NADP+ + 2e- + H+ → NADPH(递氢)ADP→ATP (递能)CO2+C5化合物→C3化合物(二氧化碳的固定)C3化合物→(CH2O)+ C5化合物(有机物的生成)光合作用的过程:1.光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。我们每时每刻都在吸入光合作用释放的氧。我们每天吃的食物,也都直接或间接地来自光合作用制造的有机物。那么,光合作用是怎样发现的呢?光合作用的发现 直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么。1771年,英国科学家普利斯特利发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死。因此,他指出植物可以更新空气。但是,他并不知道植物更新了空气中的哪种成分,也没有发现光在这个过程中所起的关键作用。后来,经过许多科学家的实验,才逐渐发现光合作用的场所、条件、原料和产物。下面介绍其中几个著名的实验。1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉。然后把这个叶片一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵。通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围。恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所。光合作用的过程:光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的类囊体上进行的。暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。光合作用的重要意义 光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。光合作用的意义可以概括为以下几个方面;第一,制造有机物。绿色植物通过光合作用制造有机物的数量是非常巨大的。据估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球上每年工业产品的总产量。所以,人们把地球上的绿色植物比作庞大的“绿色工厂”。绿色植物的生存离不开自身通过光合作用制造的有机物。人类和动物的食物也都直接或间接地来自光合作用制造的有机物。第二,转化并储存太阳能。绿色植物通过光合作用将太阳能转化成化学能,并储存在光合作用制造的有机物中。地球上几乎所有的生物,都是直接或间接利用这些能量作为生命活动的能源的。煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的。第三,使大气中的氧和二氧化碳的含量相对稳定。据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒)。以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完。然而,这种情况并没有发生。这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定。第四,对生物的进化具有重要的作用。在绿色植物出现以前,地球的大气中并没有氧。只是在距今20亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势以后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展。由于大气中的一部分氧转化成臭氧(O3)。臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物开始逐渐能够在陆地上生活。经过长期的生物进化过程,最后才出现广泛分布在自然界的各种动植物。光线光谱与植物光合作用的关系近年来,光质对植物生长与形态的影响引起研究人员的重视。例如日本学界着重探讨LED单色光对组织培养苗的生长性状影响。以色列则以不同颜色的塑料布为披覆材料,探讨对于叶菜与观叶植物生长的影响。光质与植物发育的关系,最著名的文献为“Photo morphogenesis in Plant”之论述资料,作者为R. E. Kendrick 与G. H. M. Kronenberg (1986年,Martinus Nijhoff Publishers) 。其资料如下:光 谱 范 围 对 植 物 生 理 的 影 响280 ~ 315nm 对形态与生理过程的影响极小315 ~ 400nnm 叶绿素吸收少,影响光周期效应,阻止茎伸长400 ~ 520nm(蓝) 叶绿素与类胡萝卜素吸收比例最大,对光合作用影响最大520 ~ 610nm 色素的吸收率不高610 ~ 720nm(红) 叶绿素吸收率低,对光合作用与光周期效应有显著影响720 ~ 1000nm 吸收率低,刺激细胞延长,影响开花与种子发芽>1000nm 转换成为热量在2004年7(2)期的Flower Tech刊物,有篇文章讨论光的颜色对光合作用的影响。作者为Harry Stijger先生。文章的子标题表示通常大家认为光的颜色对于光合作用的影响有所不同,事实上在光合作用过程中,光颜色的影响性并无不同,因此使用全光谱最有利于植物的发育。植物对光谱的敏感性与人眼不同。人眼最敏感的光谱为555nm,介于黄-绿光。对蓝光区与红光区敏感性较差。植物则不然,对于红光光谱最为敏感,对绿光较不敏感,但是敏感性的差异不似人眼如此悬殊。植物对光谱最大的敏感地区为400~700nm。此区段光谱通常称为光合作用有效能量区域。阳光的能量约有45%位于此段光谱。因此如果以人工光源以补充光量,光源的光谱分布也应该接近于此范围。光源射出的光子能量因波长而不同。例如波长400nm(蓝光)的能量为700nm(红光)能量的1.75倍。但是对于光合作用而言,两者波长的作用结果则是相同。蓝色光谱中多余不能作为光合作用的能量则转变为热量。换言之,植物光合作用速率是由400~700nm中植物所能吸收的光子数目决定,而与各光谱所送出的光子数目并不相关。但是一般人的通识都认为光颜色影响了光合作用速率。植物对所有光谱而言,其敏感性有所不同。此原因来自叶片内色素(pigments)的特殊吸收性。其中以叶绿素最为人所知晓。但是叶绿素并非对光合作用唯一有用的色素。其它色素也参与光合作用,因此光合作用效率无法仅有考虑叶绿素的吸收光谱。光合作用路径的相异也与颜色不相关。光能量由叶片中的叶绿素与胡萝卜素所吸收。能量藉由两种光合系统以固定水分与二氧化碳转变成为葡萄糖与氧气。此过程利用所有可见光的光谱,因此各种颜色的光源对于光合作用的影响几乎没有不同。有些研究人员认为在橘红光部份有最大的光合作用能力。但是此并不表示植物应该栽培于此种单色光源。对植物的形态发展与叶片颜色而言,植物应该接收各种平衡的光源。蓝色光源(400~500nm)对植物的分化与气孔的调节十分重要。如果蓝光不足,远红光的比例太多,茎部将过度成长,而容易造成叶片黄化。红光光谱(655~665nm)能量与远红光光谱(725~735nm)能量的比例在1.0与1.2之间,植物的发育将是正长。但是每种植物对于这些光谱比例的敏感性也不同。在温室内部常常以高压钠灯做为人工光源。以Philips Master SON-TPIA灯源为例,在橘红色光谱区有最高能量。然而在远红外光的能量并不高,因此红光/远红光能量比例大于2.0。但是由于温室仍有自然阳光,因此并未造成植物变短。(如果在生长箱使用此光源,就可能产生影响。)在自然阳光下,蓝光能量占有20%。对人工光源而言,并不需要如此高的比例。对正常发育的植物而言,多数植物只需要400~700nm范围内6%的蓝光能源。在自然阳光下,已有此足够蓝光能量。因此人工光源不需要额外补充更多的蓝光光谱。但是在自然光源不足时(如冬天),人工光源需要增加蓝光能量,否则蓝色光源将成为植物生长的限制影响因子。但是如果不用光源改善方法,仍是有其它方法可补救此光源不足问题。例如以温度调节或是施用生长荷尔蒙。(附记):由BSE研究室对光源与植物组培养苗发育关系的研究结果,有两点结论与此篇文章相近:一、光源的颜色并不影响光合作用速率,因此也不影响鲜重或干物重。影响光合作用速率的主要因子仍是光量与温度。二、光质影响了组培苗的形态,例如组培苗节距长度(苗的高度),叶片叶绿素含量,地下物与地下物的比例等。 (中兴大学生物系统工程研究室 陈加忠)参考资料:科技视窗/花卉,园林绿化,蔬菜·云南园艺博览光合作用维基百科,自由的百科全书跳转到: 导航, 搜索光合作用(Photosynthesis)是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为葡萄糖,并释放出氧气的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为30%左右。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键。而地球上的碳氧循环,光合作用是其中最重要的一环。目录 [隐藏]1 光合作用的发现2 原理2.1 光反应和暗反应2.1.1 光反应2.1.2 暗反应2.1.2.1 C3类植物2.1.2.1.1 卡尔文循环2.1.2.2 C4类植物2.1.2.2.1 详细请见2.1.2.3 景天酸代谢植物3 藻类和细菌的光合作用4 研究意义5 链接[编辑]光合作用的发现古希腊哲学家亚里士多德认为,植物生长所需的物质全来源于土中。荷兰人范·埃尔蒙做了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。他没有认识到空气中的物质参与了有机物的形成。1771年,英国的普里斯特利发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。1773年,荷兰的英恩豪斯证明只有植物的绿色部分在光下才能起使空气变“好”的作用。1804年,瑞士的索绪尔通过定量研究进一步证实二氧化碳和水是植物生长的原料。1845年,德国的迈尔发现植物把太阳能转化成了化学能。1864年,德国的萨克斯发现光合作用产生淀粉。1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所。1897年,首次在教科书中称它为光合作用。[编辑]原理植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放氧气:12H2O + 6CO2 + 光 → C6H12O6 (葡萄糖) + 6O2↑+ 6H2O注意:1 上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都下写上水分子,或者在右边的水分子右上角打上星号。[编辑]光反应和暗反应光合作用可分为光反应和暗反应两个步骤,[编辑]光反应场所:叶绿体膜影响因素:光强度,水分供给植物光合作用的两个吸收峰叶绿素a,b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子,作为能量,将从水分子光解光程中得到电子不断传递,最后传递给辅酶NADP。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP带走。一分子NADP可携带两个氢离子。这个NADPH+H离子则在暗反应里面充当还原剂的作用。意义:1:光解水,产生氧气。2:将光能转变成化学能,产生ATP,为暗反应提供能量。3:利用水光解的产物氢离子,合成NADPH+H离子,为暗反应提供还原剂。[编辑]暗反应实质是一系列的酶促反应场所:叶绿体基质影响因素:温度,二氧化碳浓度过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3,C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。[编辑]C3类植物二战之后,美国加州大学贝克利分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。此时C14示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。卡尔文在实验中发现,标记有C14的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与一直化学物比较,斑点中的化学成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子, 所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO2的植物称为C3植物。后来研究还发现, CO2固定的C3途径是一个循环过程,人们称之为C3循环。这一循环又称卡尔文循环。C3类植物,如米和麦,二氧化碳经气孔即如叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。[编辑]卡尔文循环卡尔文循环(Calvin Cycle)是光合作用的暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。大部分植物会将吸收到的一分子二氧化碳通过一种叫二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖。[编辑]C4类植物在20世纪60年代,澳大利亚科学家哈奇和斯莱克发现玉米、甘蔗等热带绿色植物,除了和其他绿色植物一样具有卡尔文循环外,CO2首先通过一条特别的途径被固定。这条途径也被称为哈奇-斯莱克途径。C4植物主要是那些生活在干旱热带地区的植物。在这种环境中,植物若长时间开放气孔吸收二氧化碳,会导致水分通过蒸腾作用过快的流失。所以,植物只能短时间开放气孔,二氧化碳的摄入量必然少。植物必须利用这少量的二氧化碳进行光合作用,合成自身生长所需的物质。在C4植物叶片维管束的周围,有维管束鞘围绕,这些维管束鞘案由叶绿体,但里面并无基粒或发育不良。在这里,主要进行卡尔文循环。其叶肉细胞中,含有独特的酶,即磷酸烯醇式丙酮酸碳氧化酶,使得二氧化碳先被一种三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸,这也是该暗反应类型名称的由来。这草酰乙酸在转变为苹果酸盐后,进入维管束鞘,就会分解释放二氧化碳和一分子丙酮酸。二氧化碳进入卡尔文循环,后同C3进程。而丙酮酸则会被再次合成磷酸烯醇式丙酮酸,此过程消耗ATP。该类型的优点是,二氧化碳固定效率比C3高很多,有利于植物在干旱环境生长。C3植物行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所,而维管束鞘细胞则不含叶绿体。而C4植物的淀粉将会贮存于维管束鞘细胞内,因为C4植物的卡尔文循环是在此发生的。[编辑]详细请见C4类植物[编辑]景天酸代谢植物景天酸代谢(crassulacean acid metabolism, CAM): 如果说C4植物是空间上错开二氧化碳的固定和卡尔文循环的话,那景天酸循环就是时间上错开这两者。行使这一途径的植物,是那些有着膨大肉质叶子的植物,如凤梨。这些植物晚上开放气孔,吸收二氧化碳,同样经哈奇-斯莱克途径将CO2固定。早上的时候气孔关闭,避免水分流失过快。同时在叶肉细胞中开尔文循环开始。这些植物二氧化碳的固定效率也很高。详细请见:景天酸代谢植物意义:二氧化碳的固定,使得原本化学性质不活泼的二氧化碳,化学活性增加,以利于被还原,最后合成葡萄糖。[编辑]藻类和细菌的光合作用真核藻类,如红藻、绿藻、褐藻等,和植物一样具有叶绿体,也能够进行产氧光合作用。光被叶绿素吸收,而很多藻类的叶绿体中还具有其它不同的色素,赋予了它们不同的颜色。进行光合作用的细菌不具有叶绿体,而直接由细胞本身进行。属于原核生物的蓝藻(或者称“蓝细菌”)同样含有叶绿素,和叶绿体一样进行产氧光合作用。事实上,目前普遍认为叶绿体是由蓝藻进化而来的。其它光合细菌具有多种多样的色素,称作细菌叶绿素或菌绿素,但不氧化水生成氧气,而以其它物质(如硫化氢、硫或氢气)作为电子供体。不产氧光合细菌包括紫硫细菌、紫非硫细菌、绿硫细菌、绿非硫细菌和太阳杆菌等。[编辑]研究意义研究光合作用,对农业生产,环保等领域起着基础指导的作用。知道光反应暗反应的影响因素,可以趋利避害,如建造温室,加快空气流通,以使农作物增产。人们又了解到二磷酸核酮糖羧化酶的两面性,即既催化光合作用,又会推动光呼吸,正在尝试对其进行改造,减少后者,避免有机物和能量的消耗,提高农作物的产量。当了解到光合作用与植物呼吸的关系后,人们就可以更好的布置家居植物摆设。比如晚上就不应把植物放到室内,以避免因植物呼吸而引起室内氧气浓度降低。[编辑]链接/wljc/xbswx/8/experiment/experiment_08.htm三种类型植物的简单对比取自"blog.org/wiki/%E5%85%89%E5%90%88%E4%BD%9C%E7%94%A8因为光合作用主要在叶绿体中进行,而叶绿体的叶绿素是参与光合作用的主要色素。叶绿素中有镁离子,其共同与卟啉环构成。当然,光合作用是一系列过程,其中光合作用进行的细胞内的缓冲条件,酶的辅基,等等都需要矿质元素的参与。因此,可以说光合作用受矿质元素的影响。答案是D 光反应和暗反应都需要酶参与A叶绿素离开叶肉可以进行光合作用B温度太低,酶失活,无法进行光合作用CADP--ATP是暗反应的产物,不是光反应的
早期探索
直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么。1880年,美国科学家恩格尔曼(G.Engelmann,1809-1884)用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵。通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围。恩格尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所。
植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。经过关于光合作用的实验,可得结论:
⒈绿叶在光下可以制造淀粉,并释放氧气
⒉绿叶制造淀粉需要二氧化碳作为原料
⒊绿叶制造淀粉只能在有绿色的部分进行,此外水也是制造淀粉必须的原料
*淀粉遇碘液能变成蓝色
*氢氧化钠能吸收空气中的二氧化碳
起源探索
光合作用不是起源于植物和海藻,而是起源于细菌。
从这些进程中能够很明显地看出,无论是宿主生物体,还是共生细胞,它们都在光合作用。此“半植半兽”微生物在宿主和共生体细胞之间的快速转变可能在光合作用演化过程中起过关键作用,推动了植物和海藻的进化。虽然科学家还不能培养野生Hatena来完全研究清楚他的生命周期,但是这一阶段的研究可能会为搞清楚什么使得叶绿体成为细胞永久的一部分提供了一些线索。科学家认为,此生命现象导致海藻进化出一种吞噬细菌的方法,最终使海藻进化出自己的叶绿体来进行光合作用。然而,这一过程到底是怎样发生的,还是一个不解之谜。从此研究发现可以看出,光合作用不是起源于植物和海藻,而是最先发生在细菌中。正是因为细菌的有氧光合作用演化造成地球大气层中氧气含量的增加,从而导致复杂生命的繁衍达十亿年之久。在其他的实验中,冈本和井上教授尝试了喂给Hatena其他的海藻,想看看它是否会有同样的反应。但是,尽管它也吞噬了海藻,却没有任何改变的过程。这说明在这两者之间存在着某种特殊的关系。判断出这种关系是否是基因决定的将是科学家需要解决的下一个难题。
光合作用的基因可能同源,
光合作用植物
但演化并非是一条从简至繁的直线科学家罗伯持·布来肯细普曾在《科学》杂志上发表报告说,我们知道这个光合作用演化来自大约25亿年前的细菌,但光合作用发展史非常不好追踪,且光合微生物的多样性令人迷惑,虽然有一些线索可以将它们联系在一起,但还是不清楚它们之间的关系。为此,布来肯细普等人通过分析五种细菌的基因组来解决部分的问题。他们的结果显示,光合作用的演化并非是一条从简至繁的直线,而是不同的演化路线的合并,靠的是基因的水平转移,即从一个物种转移到另一个物种上。通过基因在不同物种间的“旅行”从而使光合作用从细菌传到了海藻,再到植物。布来肯细普写道:“我们发现这些生物的光合作用相关基因并没有相同的演化路径,这显然是水平基因转移的证据。”他们利用BLAST检验了五种细菌:蓝绿藻、绿丝菌、绿硫菌、古生菌和螺旋菌的基因,结果发现它们有188个基因相似,而且,其中还有约50个与光合作用有关。它们虽然是不同的细菌,但其光合作用系统相当雷同,他们猜测光合作用相关基因一定是同源的。但是否就是来自Hatena,还有待证实。然而,光合作用的演化过程如何?为找到此答案,布来肯细普领导的研究小组利用数学方法进行亲缘关系分析,来看看这5种细菌的共同基因的演化关系,以决定出最佳的演化树,结果他们测不同的基因就得出不同的结果,一共支持15种排列方式。显然,它们有不同的演化史。他们比较了光合作用细菌的共同基因和其它已知基因组的细菌,发现只有少数同源基因堪称独特。大多数的共同基因可能对大多数细菌而言是“日常”基因。它们可能参加非光合细菌的代谢反应,然后才被收纳成为光合系统的一部分。
发现年表
公元前4世纪,古希腊哲学家亚里士多德认为:植物生长所需的物质全来源于土中。
1627年,荷兰人范·埃尔蒙做了盆栽柳树称重实验,
得出植物的重量主要不是来自土壤而是来自水的推论。他没有认识到空气中的物质参与了有机物的形成。
1648年,比利时科学家海尔蒙特(Jan Baptist van Helmont)出于对亚里士多德观点的怀疑,做了类似范·埃尔蒙的实验:将一棵重2.5kg的柳树苗栽种到一个木桶里,木桶里盛有事先称过重量的土壤。以后,他每天只用纯净的雨水浇灌树苗。为防止灰尘落入,他还专门制作了桶盖。五年以后,柳树增重80多千克,而土壤却只减少了100g,海尔蒙特为此提出了建造植物体的原料是水分这一观点。但是当时他却没有考虑到空气的作用。
1771年,英国的普里斯特利(J.Priestley,1733-1804)发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。他做了一个有名的实验,他把一支点燃的蜡烛和一只小白鼠分别放到密闭的玻璃罩里,蜡烛不久就熄灭了,小白鼠很快也死了。接着,他把一盆植物和一支点燃的蜡烛一同放到一个密闭的玻璃罩里,他发现植物能够长时间地活着,蜡烛也没有熄灭。他又把一盆植物和一只小白鼠一同放到一个密闭的玻璃罩里。他发现植物和小白鼠都能够正常地活着,于是,他得出了结论:植物能够更新由于蜡烛燃烧或动物呼吸而变得污浊了的空气。但他并没有发现光的重要性。
1779年,荷兰的英格豪斯(J.Ingen-housz)证明:植物体只有绿叶才可以更新空气,并且在阳光照射下才成功。
1785年,随着空气组成成分的发现,人们才明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳 。
1804年,法国的索叙尔通过定量研究进一步证实:二氧化碳和水是植物生长的原料。
1845年,德国科学家梅耶(R.Mayer) 根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。
1864年,德国的萨克斯发现光合作用产生淀粉。他做了一个试验:把绿色植物叶片放在暗处几个小时,目的是让叶片中的营养物质消耗掉,然后把这个叶片一半曝光,一半遮光。过一段时间后,用碘蒸汽处理发现遮光的部分没有发生颜色的变化,曝光的那一半叶片则呈深蓝色。这一实验成功的证明绿色叶片在光和作用中产生淀粉。
1880年,美国的恩格尔曼发现叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。他把载有水绵(水绵是多细胞低等绿色植物,其细而长的带状叶绿体是螺旋盘绕在细胞内)和好氧细菌的临时装片放在没有空气的暗环境里,然后用极细光束照射水绵通过显微镜观察发现,好氧细菌向叶绿体被光照的部位集中:如果上述临时装片完全暴露在光下,好氧细菌则分布在叶绿体所有受光部位的周围。恩格尔曼的实验证明了氧气是从中叶绿体释放出来的;叶绿体是绿色植物进行光合作用的场所。
1897年,“光合作用”这个名称首次在教科书中出现。
1941年,美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)采用同位素标记法研究了“光合作用中释放出的氧到底来自水,还是来自二氧化碳”这个问题,这一实验有利地证明光合作用释放的氧气来自水。
20世纪40年代,美国科学家卡尔文(M.Calvin)用小球藻做实验:用14C标记的CO2(其中碳为14C)供小球藻(一种单细胞的绿藻)进行光合作用,然后追踪检测其放射性,最终探明了二氧化碳中的碳在光合作用中转化成有机物中碳的途径,这一途径被成为卡尔文循环。
21世纪初,合成生物学的兴起,人工设计与合成生物代谢反应链成为改造生物的转基因系统生物技术,2003年美国贝克利大学成立合成生物学系,开展光合作用的生物工程技术开发,同时美国私立文特尔研究所展开藻类合成生物学的生物能源技术开发,将使光合作用技术开发在太阳能产业领域带来一场变革。
光合作用作用应从三个方面学习:光反应、暗反应、影响光合作用作用因素一、光反应条件是什么:光,色素,光反应酶 所场在那里:囊状结构薄膜上各种色素作用你要清楚:色素起吸收传递和转化光能作用,但个别色素作用你要清楚,如被激活的叶绿素A,是做什么的?光反应的意义是什么:1、光解水产生氧气。2:将光能转变成化学能,产生ATP,为暗反应提供能量。3:利用水光解的产物氢离子,合成NADPH+H离子,为暗反应提供还原剂【H】(还原氢)。还要记得书上基本反应式,我就不写了。二、暗反应关于碳三碳四植物的考题,C3如类植物有那些?水稻和小麦均是碳三。二氧化碳经气孔进入叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。 C4类植物有那些?如玉米。这类植物,可以在低二氧化碳时进行光合作用。至少于二氧化碳怎样进入卡尔文循环你要了解。关于卡尔文循环:光合作用的暗反应的一部分。1、反应场所为叶绿体内的。基质2、循环的三个阶段,主要考有其过程有那几步,如二氧化碳的固定、碳三的还原。书上有图这个你要记得。三、影响光合作用作用因素:温度、光照强度、CO2浓度等与光合强度的关系,此类题一般以图像形式考,但太多时候会与呼吸作用放在一起,要特别留心。
图片来自百度,部分参考光合作用论,以及百度百科:/view/8885.htm
部分重要公式:
反 应
酶
6CO2+6双磷酸核酮糖→12 3-磷酸甘油酸
Rubisco
12 3-磷酸甘油酸+12ATP→12 1,3二磷酸甘油酸+12NADP+ +12Pi
磷酸甘油酸激酶
12 1,3二磷酸甘油酸+12NADPH+12H+ →12甘油醛-3-磷酸+12NADP+ +12Pi
磷酸甘油醛脱氢酶
5甘油醛-3-磷酸→(可逆)5磷酸二羟丙酮
磷酸三碳糖异构酶
3甘油醛-3-磷酸+3磷酸二羟丙酮→3果糖1,6-二磷酸
醛缩酶
3果糖1,6-二磷酸+3H2O→3果糖6-磷酸+3Pi
果糖双磷酸酯酶
2果糖6-磷酸→2葡萄糖6-磷酸
六碳糖磷酸异构酶
2葡萄糖6-磷酸+2甘油醛-3-磷酸→2木酮糖-5-磷酸+2赤藓糖-4-磷酸
转酮基酶
2赤藓糖-4-磷酸+2磷酸二羟丙酮→2景天庚酮糖-1,7-二磷酸
醛缩酶
2景天庚酮糖-1,7-二磷酸+2H2O→2景天庚酮糖-7-磷酸+2Pi
磷酸酯酶
2景天庚酮糖-7-磷酸+2甘油醛-3-磷酸→2核糖-5-磷酸+2木酮糖-5-磷酸
转酮基酶
2核糖-5-磷酸→2核酮糖-5-磷酸
五碳糖磷酸异构酶
4木酮糖-5-磷酸→4核酮糖-5-磷酸
差向异构酶
6核酮糖-5-磷酸+6ATP→6双磷酸核酮糖+6ADP
核酸核酮糖激酶
总反应式为
6双磷酸核酮糖+6CO2+18ATP+12NADPH+12H+→6双磷酸核酮糖+C6H12O6+18ADP+18Pi+12NADP
或6CO2+18ATP+12NADPH+12H+→+C6H12O6+18ADP+18Pi+12NADP
追问呵呵 就是 百度百科啊 还有没有其他的啊追答
呵呵,大部分是的。
【摘要】报告了85例急性脑卒中患者的护理体会。对新入院的患者要稳定情绪,绝对卧床休息。 密切六连观察,防止感染,控制并发症,给予高热量、高蛋白、高维生素、易消化的饮食,保持大便通畅。恢复期加强功能锻炼,促进机体早日康复。 【关键词】急性脑卒中具有发病急、病情复杂、变化快、病死率高的特点,做好急性卒中患者的护理工作非常重要,因此必须采取有效的措施加强护理工作,提高护理质量,现将 其报告如下。 1临床资料 1.1一般资料:患者85例均系我院2008年1月-10月收治的患者。男50例,女35例,年龄28-87岁,平匀年龄56岁。由活动时起病80例,明显的诱因主要是用力、饮酒、情绪激动。 1.2临床主要症状:昏迷35例,嗜睡20例,肢体瘫痪50例,呕吐20例,大小便失禁41例,血压升高80例,头痛30例,头晕8例。 1.3辅助检查:85例都做CT扫描,诊断为脑卒中。 1.4预后:治愈40例(47.2%),好转25例(29.2%),死亡20例(23.6%)。 2护理体会 2.1稳定患者情绪,绝对卧床休息。患者入院后受医院环境和其它因素的影响,使患者情绪不稳定。另外,家属的紧张情绪和医护人员的操作也会加重患者负担。所以,护士必须做 好入院宣教工作,向患者及家属讲解有关脑卒中的卫生知识。嘱其绝对卧床休息,床头抬高30℃,降低颅内压。解释保持情绪稳定的重要性,避免刺激性语言,语言要亲切体贴, 谈病人感兴趣的话题,使病人心情舒畅乐观,树立战胜疾病的信心。昏迷患者取侧卧位,保持呼吸道通畅,防止发生窒息。 2.2密切观察,建立重症记录:每15~30分钟观察患者意识、瞳孔、血压、呼吸、体温、脉搏。脑卒中患者入院时多有意识障碍,注意观察患者意识障碍程度,瞳孔的大小、形状及 对光反应等。一般发热在24小时后出现可由继发感染引起,但如果持续高热不退,抗生素药物治疗无效,则提示中枢性高热。入院后如颅内压持续升高,脑组织缺氧,可致呼吸加 深加快,如血压升高,呼吸和脉搏变慢,则可提示脑干受损。 2.3防治感染,控制并发症:保持呼吸道通畅,及时清除口腔、鼻腔、咽部分泌物,防止肺部感染。做好口腔护理,每日用0.9%生理盐水擦洗口腔2次。防止泌尿系感染,每日清洁 会阴及肛门1次,如留置导尿管,定期更换导尿管及膀胱冲洗。由于脑卒中患者长期卧床,要保持床铺干燥、整洁,在骨隆突部位垫气圈或海棉垫,减少局部受压,每2小时翻身1次 ,用30%酒精按摩受压部位,防止褥疮的发生。中枢性高热宜早期处理,头部用冰袋冷敷,以降低脑细胞代谢,减轻脑水肿,保护脑细胞,用30%酒精擦,每小时降温不超过2℃, 以免降温过速引起反射性寒战。 2.4注意患者营养治疗和胃肠道情况:患者由于长期卧床,进食量少,肠蠕动减慢及神经系统反应迟钝,营养失调,低于机体生存需要量,应增加营养的供给。给予高热量、高蛋白 、高维生素、易消化的饮食。昏迷患者行鼻饲营养物质。密切观察消化道情况,如有应激性溃疡,给予止血剂。在急性期,要指导患者自主或不自主的排便,养成在床上排便的习 惯,避免排便用力过大,引起颅压增高,必要时用开塞露,防止便秘。 2.5恢复期的护理:首先做好恢复期宣教工作,解除患者心理障碍,保持良好心态。其次指导并协助患者进行早期肢体锻炼,循序渐进,由小幅度活动开始逐渐增加活动及时间,由 被动活动开始逐渐过度主动活动。协助患者使用健肢帯动患肢在床上运动,如上肢的抬举,左右旋转,双手抓卧,下肢内收,屈膝、伸髋、伸膝、踝后屈、背屈等。对失语患者要 及早进行语言训练,护士应经常配合家属一起与患者交谈,起初交谈困难时先书面交流,再慢慢练习发音吐字。可先从数数字开始,由浅到深,训练和培养其语言表达能力。做各 种功能训练时可配合针灸、按摩、理疗、加速其功能恢复。*/的影响,使患者情绪不稳定。另外,家属的紧张情绪和医护人员的操作也会加重患者负担。所以,护士必须做好入院 宣教工作,稳定患者情绪,树立战胜疾病信心。更多追问追答追问
是这样的吗追答
是的我同事老公是大夫追问
哦追答
亲,望采纳哈追问
是吗追答
好吗谢谢!追问
在给我发过另一份!完整点的
学霸还在不追答
在追问
请问你昨天发过来的论文你哪里有这个论文的病例吗追答
我查的资料,同事老公是大夫追问
我就是要个病例追答
哦哦追问
可以吗
请问
不是这些
根据下面的病例,要一份完整的毕业实习论文,急急!!!! 患者,男,57岁,因‘突发左侧枝体活动不利2小时’就诊,急诊行头颅CT检查显示:左侧基底节区脑出血,以高血压脑出血 急诊入院,入院后给控制血压,降颅压等对症支持治疗第二天行立体定位颅内血肿穿刺引流术,术后继续控制血压降颅压并且给宇尿激酶血肿抢冲洗,术后第三天查头CT显示血肿已经基本完全引流,15天后无明显后遗症出院
这个病例你会写护理论文吗追答
这个我不会。我是语文老师不是做医生的亲追问
好吧追答
亲,望采纳追问
那帮我问一下你同事的丈夫可以吗追答
这个点打电话不好
您看看自己写写看呢本回答由网友推荐你想请假条吗
参考文献 论文 字体 格式