欢迎来到华夏图书馆!包月下载,不限IP,随心所欲! 【加入收藏】
| 本站已稳定运行4034天

有关数学史的毕业论文与数学史毕业论文好写吗

点击进入免费下载2022年中国知网论文


1、数学史论文

  一篇有关数学史的论文(网上搜索不到)  研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是:  ①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。  内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;  外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。  数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。  人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。  近代西欧各国的数学史研究,是从18世纪,由J蒙蒂克拉、CCde拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。  ①通史研究 代表作可以举出M康托尔的《数学史讲义》(4卷,1880~1908)以及C博耶(1894、1919)、D史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国MLL萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。  ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范?德?瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。  ④断代史和分科史研究 德国数学家(C克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家JH外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于(J庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如HBshtml  数学史  自建国以来,由於中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多急需解决的疑难问题,也就是由於当时形势的需要,急需把这些“个体户”组织起来,按“互助组”的形式进行研究。  自1977年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,1984年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代著名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名著名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。  在中国古典数学中,《九章算术》及《数书九章》是两部著名学术著作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于1986年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。  原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于1986年、1987年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。  为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于1984年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。  在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至於前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。  为了深入探讨中国古典数学名著,制定了《中国数学史研究丛书》的规划,于1982年、1987年分别出版了两部学术专著,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由於这两部专著的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。  为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于1987年、1991年在北京师范大学举办了“秦九韶《数书九章》成书740周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、60余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。  为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由於技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由於发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。  到现在,“互助组”已不适合当前形势的需要,乃代替以“才团”,我们实事求是,继续前进,争取新的成绩。本回答由提问者推荐

2、中国古代数学的发展历史的论文

  中国古代数学的成就与衰落  数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。  算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。  但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。  《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。  《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。  中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。  赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(31415926<π<3html浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横’‘直’”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。

3、求一遍数学史的论文,突出数学史的发展过程,阐明数学史发展过程的内在本质

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家AWeyl说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段:   第一时期:中国数学的萌芽(远古~春秋)   古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。   春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉)   到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。   秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。   《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。   第三时期:数学理论的奠基(魏晋~唐初)   在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。   赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。   刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.  祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".   中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。   第四时期:中国传统数学的高潮(宋元时期)   数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。   贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。   秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。   杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。   元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。   第五时期:中国传统数学的衰落(明初~清中1840年)   满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。   第六时期:中西数学的合流(清中~清末1911年)   自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年)   19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。   1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。   中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…数学的发展史  世界数学发展史   数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。   数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。   更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。   从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。   到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。   数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B 普通高中数学课程标准( 实验) 在学生算法目标达成度上,重在算法思想的理解与应用,界定现代算法的意义就是解决某一类问题的办法普通高中数学课程标准( 实验) 对! 算法部分∀进行说明时,突出强调! 需要特别指出的是, 中国古代数学中蕴涵了丰富的算法思想∀ 复古是没有出路的 ∀算法教学中蕴涵着丰富的数学史教育价值, 作为新时代的高中数学教师是有必要了解这一点的 另一个则是以我国的九章算术 为代表的东方数学思想体系,这个体系以算法化的思想、 构造性的方法、 开放的归纳体系为特色中国古代数学中的! 术∀相当于现代数学术语中的! 公式∀,两者虽有相同点(都可以用来解决一类有关问题) , 其差异也非常之大 但! 术∀则由怎样运算的详细程序构成的,可以说它是为完成公式所指出的各种运算的具体程序,即把! 公式∀展开为使用某种计算工具的具体操作步骤 我国古代数学包括了今天初等数学中的算术、 代数、 集合和三角等多方面的内容 把算法综合起来, 得到一般原理, 分别隶属于各章,人们按照书中的方法、 原理和实例来解决各种实际问题受九章算术 的影响,在之后的几个世纪,一些数学家的著作都以算法为主要特点,包括王孝通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘益的议古根源 、 秦九韶的数书九章 、 李冶的测圆海镜 和益古演段 、 杨辉的详解九章算法 、 日用算法 和杨辉算法 , 这些著作中包括了增乘开方术、 贾宪三角、 高次方程数值解法、 内插法、 一次同余式组解法等一些著名的算法,进一步发展了中国古代数学算法化的特点,使得算法的特点得到了进一步的强化和发展即使是与24 数学通报        2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何方法与算法有机地结合起来,实现了几何问题的算法化这种算法化的思想着重构造实践,更强调! 经验∀、 ! 发现∀和构造性思维方式下从无到有的发明,对今天的算法教学与研究具有重要的启迪作用1  2  中国古代数学的构造性方法所谓构造性方法是解决数学问题的一种方法,是创造性思维方式直接作用的结果按照这种思维方式,可以使概念和方法按固定的方式在有限步骤内进行定义或得以实施,或给出一个行之有效的过程使之在有限步骤内将结果确定地构造出来中国古代数学的算法化思想与构造性的方法紧密相连 因为这种纯粹的理论解对于受实用价值观影响的中算家来说是没有多大意义的从我国许多经典算书中可以发现, 数学构造性方法在算法中有许多精彩的体现 这为中国古代数学的构造性方法提供了一个具有说服力的样板时至今日我国古算家所设计的许多算法几乎都可以整套照搬到现代的电子计算机上实现2  中国古代数学中的优秀算法案例2中小学数学中的算术、 代数内容, 从记数以至解联立的线性方程组, 实质上都是中国古代数学家的发明创造2 1  求最大公约数的算法(更相减损术)中国古代数学中,未曾出现素数、 因数分解等概念,但是发明了求两整数的最大公约数的方法# # # 更相减损术: ! 可半者半之,不可半者,副置分母子之数, 以少减多, 更相减损,求其等也 ∀事实上此术中包含了三个步骤:第一步, ! 可半者半之∀, 即进行观察, 若分子、分母都是偶数,可先取其半;第二步, ! 不可半者, 副置分母、 子之数, 以少减多,更相减损,求其等也∀;第三步, ! 以等数约之∀在中国古代数学中, 将最大公约数称作! 等∀若用现代语言翻译即为:第一步,任意给定两个正整数, 判断它们是否都是偶数 第二步, 以较大的数减去较小的数, 接着把所得的差与较小的数比较, 并以大数减小数下面运用 QBA SIC 语言来编写相应的程序( 见程序1) ! 更相减损术∀提供了一种求两数最大公约数的算法, 这是九章算术 的一个重要成就, 与古希腊欧几里得的几何原本 中用来求最大公约数的! 欧几里得算法∀, 即辗转相除法, 有异曲同工之妙 尽管如此,他还是暗用了一条未加说明的公理, 即如果 a, b都被c 整除, 则a- mb也能被c 整除 正如刘徽在九章算术注 中! 其所以相减者, 皆等数之重叠∀26 数学通报        2010 年 第49 卷 第2 期2 2  求一元 n 次多项式值的算法(秦九韶算法)秦九韶,南宋著名数学家,其学术思想充分体现在数书九章 这一光辉名著中,该著作不仅继承了九章算术 的传统模式, 对中算的固有特点发扬光大,而且完全符合宋元社会的历史背景, 是中世纪世界数学史上的光辉篇章在数书九章 卷五第 17 个问题以! 尖田求积∀为例的算法程序中,可以看出秦九韶对于求一元n 次多项式f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x+ a0 的值所提出的算法 在欧洲, 英国数学家霍纳( Horner ) 在1819 年才创造了类似的方法, 比秦九韶晚了572年 通过这种转化, 把运算的次数由至多( 1+ n) n2次乘法运算和n 次加法运算,减少为至多 n 次乘法运算和n 次加法运算,大大提高了运算效率算法步骤是如下的五步: 第一步, 输入多项式次数 n、 最高次项的系数an 和x 的值;第二步,将 v 的值初始化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五步,判断i 是否大于或等于 0, 若是, 则返回第三步,否则输出多项式的值v 2  中国古代的几何学中国古代的几何学从田亩丈量等生产生活中的一些实际问题中产生, 并为生产生活服务 下面以! 割圆术∀为例作简要分析 刘徽! 瓤而裁之∀,即对与圆周合体的正多边形进行无穷小分割,分成无穷多个以正多边形每边为底、 圆心为顶点的小等腰三角形, 这无穷多个小三角形的面积之和就是圆的面积刘徽的算法! 割之弥细,所失弥少,割之又割, 以至于不可割, 则与圆合体而无所失矣∀体现出程序化的过程, 可以看出圆内接正多边形逐渐逼近圆的变化趋势,并且刘徽依此开创了求圆周率精确近似值的方法, 将这种极限思想用于近似计算中算家的几何学,并不追求逻辑论证的完美,而是着重于实际计算问题的解决, ! 析理以辞, 解体用图∀, 以建立解决问题的一般方法和一般原则例如,由勾股定理自然地引起平方根的计算问题,而求平方根和立方根的方法, 其步骤就是以出入相补原理为几何背景逐步索骥而得3  中国古代数学算法的教学价值3它的具体数学知识载体也是现代算法教学的重要源泉 其次, 通过把一部分问题的求解归结为对于现成算法的! 机械应用∀, 这就为人们积极地去从事新的创造性劳动提供了更大的可能性吴文俊先生的研究使中国传统数学的算法重见天日, 开拓了数学机械化的新领域, 吴先生提出! 数学教育的现代化就是机械化∀证明机械化的实质在于, 把通常数学证明中所固有的质的困难,转化为计算的量的复杂性吴先生的理论和实践已经表明,证明和计算是数学的两个方面, 且又是统一的,这在数学教育中具有重要意义培养学生在学习数学知识的同时更多地关心所学知识的社会意义和历史意义,力图在面向未来的同时,通过同传统上的哲学、 历史和社会学的思想结合起来, 形成正确的数学观3 因此, 中算理论可以说是一种! 纲目结构∀:目是组成理论之网的眼孔;纲是联结细目的总绳 纲举目张,只有抓住贯串其中的基本理论与原理, 才能看清算法的来龙去脉从算法教学管窥中国古代数学史中国 外国位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现分数运算 周髀算经 中已有, 在九章算术 成书时已成熟 印度最早在 7 世纪才出现十进位小数 刘徽注中引入, 宋秦九韶 1247年时已通行 西欧 16 世纪时始有之, 印度无开平方、 立方 周髀算经 中已有开平方, 九章算术 中开平、 立方已成熟西方在 4 世纪末始有开平方, 但还无开立方, 印度最早在 7 世纪算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问题与方法正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西方迟至 16 世纪始有之二次方程 九章算术 中已隐含了求数值解法,三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法三次方程 唐初( 公元 7 世纪初) 有列方程法, 求数值解已成熟西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有几何解高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪28 数学通报        2010 年 第49 卷 第2 期3 比如九章算术 中列方程的方式,相当于列出其增广矩阵,其消元过程相当于矩阵变换,而矩阵是数学美学方法中对称最典型的表现形式之一; 九章算术 中用几何方法巧妙地解决了很多代数问题, 这是数形结合的统一: 把数学问题改编成歌诀,以便于掌握和传授,这是文学艺术与数学的统一参考文献1  中学数学课程教材研究开发中心 北京: 人民教育出版社, 20072  中华人民共和国教育部北京: 人民教育出版社, 20033  李文林 北京: 高等教育出版社, 20024  王鸿钧, 孙宏安 南京: 江苏教育出版社, 19885  张维忠 上海: 上海教育出版社, 19996  吴文俊 济南: 山东教育出版社, 19957  代钦 北京: 商务印书馆, 20038  费泰生 数学通讯, 2004, 79  张奠宙 科学, 2003, 55( 2)10  李建华 数学教育学报, 2004, 311  李亚玲 数学通报, 2004, 2(上接第23 页) 实验教师对课改实验进行探索、 总结、 反思、 调整, 推广比较成熟的经验,同时纠正实验过程中的偏颇与极端行为,教学过程逐步进入新的稳定阶段( 2)受不同的教学理念影响, 教师角色、 学生角色、 教学目标、 教学过程关注点等方面, 在教学过程中有很大差异这些改变对于揭示数学的内在本质, 发展学生的思维能力起到积极的作用对于课改倡导的教学理念, 只是渗透在传统的教学模式中,目前高中数学课堂教学改革的力度、 深度与课改的预期目标还有一定的距离 而今天,课改的理念已经系统培训 5 年, 许多教师仍停留在形式层面,未能变成自觉的行为 我国数学教学设计的探索与评析# # # 兼及十年初中数学教师说课评比活动[ J ] 名师授课录(中学数学高中版) [ M] , 上海教育出版社, 19913  2000 年全国首届高中青年数学教师优秀课观摩与评比的教案(会议资料)4  2008 年全国第四届高中青年数学教师优秀课观摩与评比的教案(会议资料)5  李善良 高中数学教与学,2008, 129 2010 年 第49 卷 第2 期        数学通报本回答被网友采纳

5、数学历史小论文

中国数学历史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在31415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。谁知道呀!!!!!!!!!!!!!!!!!!!!!!!



毕业论文 数学史 好写

上一篇:古汉语研究论文与古汉语研究论文集(二)目录
下一篇:会展本科论文题目与会展论文题目参考